from transformers import AutoConfig, AutoTokenizer, AutoModelForCausalLM from peft import PeftModel, PeftConfig import torch import gradio as gr import json import os import shutil import requests # Define the device device = "cuda" if torch.cuda.is_available() else "cpu" # Use model IDs as variables base_model_id = "tiiuae/falcon-7b-instruct" model_directory = "Tonic/GaiaMiniMed" # Instantiate the Tokenizer tokenizer = AutoTokenizer.from_pretrained(base_model_id, trust_remote_code=True, padding_side="left") tokenizer.pad_token = tokenizer.eos_token tokenizer.padding_side = 'left' # Load the GaiaMiniMed model with the specified configuration # Load the Peft model with a specific configuration # Specify the configuration class for the model model_config = AutoConfig.from_pretrained(base_model_id) # Load the PEFT model with the specified configuration peft_model = AutoModelForCausalLM.from_pretrained(model_directory, config=model_config) peft_model = PeftModel.from_pretrained(peft_model, model_directory) # Class to encapsulate the Falcon chatbot class FalconChatBot: def __init__(self, system_prompt="You are an expert medical analyst:"): self.system_prompt = system_prompt def process_history(self, history): # Filter out special commands from the history filtered_history = [] for message in history: user_message = message["user"] assistant_message = message["assistant"] # Check if the user_message is not a special command if not user_message.startswith("Falcon:"): filtered_history.append({"user": user_message, "assistant": assistant_message}) return filtered_history def predict(self, system_prompt, user_message, assistant_message, history, max_length=500): # Process the history to remove special commands processed_history = self.process_history(history) # Combine the user and assistant messages into a conversation conversation = f"{system_prompt}\nFalcon: {assistant_message if assistant_message else ''} User: {user_message}\nFalcon:\n" # Encode the conversation using the tokenizer input_ids = tokenizer.encode(conversation, return_tensors="pt", add_special_tokens=False) # Generate a response using the Falcon model response_text = peft_model.generate(input_ids, max_length=max_length, use_cache=True, early_stopping=True, bos_token_id=peft_model.config.bos_token_id, eos_token_id=peft_model.config.eos_token_id, pad_token_id=peft_model.config.eos_token_id, temperature=0.4, do_sample=True) # Generate the formatted conversation in Falcon message format conversation = f"{system_prompt}\n" for message in processed_history: user_message = message["user"] assistant_message = message["assistant"] conversation += f"Falcon:{' ' + assistant_message if assistant_message else ''} User: {user_message}\n Falcon:\n" return response_text # Create the Falcon chatbot instance falcon_bot = FalconChatBot() # Define the Gradio interface title = "👋🏻Welcome to Tonic's 🦅Falcon's Medical👨🏻‍⚕️Expert Chat🚀" description = "You can use this Space to test out the GaiaMiniMed model [(Tonic/GaiaMiniMed)](https://huggingface.co/Tonic/GaiaMiniMed) or duplicate this Space and use it locally or on 🤗HuggingFace. [Join me on Discord to build together](https://discord.gg/VqTxc76K3u)." examples = [ ["Assistant is a public health and medical expert ready to help the user.", [{"user": "Hi there, I have a question!", "assistant": "My name is Gaia, I'm a health and sanitation expert ready to answer your medical questions."}], ["Assistant is a public health and medical expert ready to help the user.", [{"user": "What is the proper treatment for buccal herpes?", "assistant": None}]] ] additional_inputs=[ gr.Textbox("", label="Optional system prompt"), gr.Slider( label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs", ), gr.Slider( label="Max new tokens", value=256, minimum=0, maximum=3000, step=64, interactive=True, info="The maximum numbers of new tokens", ), gr.Slider( label="Top-p (nucleus sampling)", value=0.90, minimum=0.01, maximum=0.99, step=0.05, interactive=True, info="Higher values sample more low-probability tokens", ), gr.Slider( label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens", ) ] iface = gr.Interface( fn=falcon_bot.predict, title=title, description=description, examples=examples, inputs=[ gr.inputs.Textbox(label="System Prompt", type="text", lines=2), gr.inputs.Textbox(label="User Message", type="text", lines=3), gr.inputs.Textbox(label="Assistant Message", type="text", lines=2), ] + additional_inputs, outputs="text", theme="ParityError/Anime" ) # Launch the Gradio interface for the Falcon model iface.launch()