File size: 4,316 Bytes
927b5de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
from transformers import AutoConfig, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM, MistralForCausalLM
from peft import PeftModel, PeftConfig
import torch
import gradio as gr
import random
from textwrap import wrap

EXAMPLES = [
    ["Hey Falcon! Any recommendations for my holidays in Abu Dhabi?"],
    ["What's the Everett interpretation of quantum mechanics?"],
    ["Give me a list of the top 10 dive sites you would recommend around the world."],
    ["Can you tell me more about deep-water soloing?"],
    ["Can you write a short tweet about the release of our latest AI model, Falcon LLM?"]
    ]


device = "cuda" if torch.cuda.is_available() else "cpu"
base_model_id = "tiiuae/falcon-7b-instruct"
model_directory = "Tonic/GaiaMiniMed"

tokenizer = AutoTokenizer.from_pretrained(base_model_id, trust_remote_code=True, padding_side="left")
model_config = AutoConfig.from_pretrained(base_model_id)
peft_model = AutoModelForCausalLM.from_pretrained(model_directory, config=model_config)
peft_model = PeftModel.from_pretrained(peft_model, model_directory)

def format_prompt(message, history, system_prompt):
  prompt = ""
  if system_prompt:
    prompt += f"System: {system_prompt}\n"
  for user_prompt, bot_response in history:
    prompt += f"User: {user_prompt}\n"
    prompt += f"Falcon: {bot_response}\n" # Response already contains "Falcon: "
  prompt += f"""User: {message}
Falcon:"""
  return prompt

seed = 42

def peft_model.generate(
    prompt, history, system_prompt="", temperature=0.9, max_new_tokens=500, top_p=0.95, repetition_penalty=1.0,
):
    temperature = float(temperature)
    if temperature < 1e-2:
        temperature = 1e-2
    top_p = float(top_p)
    global seed
    generate_kwargs = dict(
        temperature=temperature,
        max_new_tokens=max_new_tokens,
        top_p=top_p,
        repetition_penalty=1.0,
        stop_sequences="[END]",
        do_sample=True,
        seed=seed,
    )
    seed = seed + 1
    formatted_prompt = format_prompt(prompt, history, system_prompt)

    try:
        stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
        output = ""

        for response in stream:
            output += response.token.text
    
            for stop_str in STOP_SEQUENCES:
                if output.endswith(stop_str):
                    output = output[:-len(stop_str)]
                    output = output.rstrip()
                    yield output
            yield output
    except Exception as e:
        raise gr.Error(f"Error while generating: {e}")
    return output


additional_inputs=[
    gr.Textbox("", label="Optional system prompt"),
    gr.Slider(
        label="Temperature",
        value=0.9,
        minimum=0.0,
        maximum=1.0,
        step=0.05,
        interactive=True,
        info="Higher values produce more diverse outputs",
    ),
    gr.Slider(
        label="Max new tokens",
        value=256,
        minimum=0,
        maximum=3000,
        step=64,
        interactive=True,
        info="The maximum numbers of new tokens",
    ),
    gr.Slider(
        label="Top-p (nucleus sampling)",
        value=0.90,
        minimum=0.01,
        maximum=0.99,
        step=0.05,
        interactive=True,
        info="Higher values sample more low-probability tokens",
    ),
    gr.Slider(
        label="Repetition penalty",
        value=1.2,
        minimum=1.0,
        maximum=2.0,
        step=0.05,
        interactive=True,
        info="Penalize repeated tokens",
    )
]


with gr.Blocks() as demo:
    with gr.Row():
        with gr.Column(scale=0.4):
            gr.Image("better_banner.jpeg", elem_id="banner-image", show_label=False)
        with gr.Column():
            gr.Markdown(
            # 👋🏻Welcome to Tonic's GaiaMiniMed Chat🚀"
            "You can use this Space to test out the current model [(Tonic/GaiaMiniMed)](https://huggingface.co/Tonic/GaiaMiniMed) or duplicate this Space and use it locally or on 🤗HuggingFace. [Join me on Discord to build together](https://discord.gg/VqTxc76K3u)."
            )

    gr.ChatInterface(
        generate, 
        examples=EXAMPLES,
        additional_inputs=additional_inputs,
    ) 

demo.queue(concurrency_count=100, api_open=False).launch(show_api=False)