Spaces:
Paused
Paused
File size: 8,198 Bytes
927b5de cfa5bb7 8f94226 4ebf1ce ddd4fed f32e978 cfa5bb7 ddd4fed cfa5bb7 ddd4fed cfa5bb7 ddd4fed bc3d6db 8de5029 bc3d6db d181372 cfa5bb7 fe35217 cfa5bb7 438d350 8d1e886 438d350 8d1e886 f32e978 8d1e886 438d350 8d1e886 f32e978 8d1e886 592760b a9a2a7f 592760b a9a2a7f 4ebf1ce 592760b cfa5bb7 fd37061 cfa5bb7 bc3d6db cfa5bb7 bc3d6db cfa5bb7 fd37061 cfa5bb7 fd37061 cfa5bb7 fd37061 cfa5bb7 fd37061 cfa5bb7 ddd4fed cfa5bb7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation import GenerationConfig
import re
import copy
from pathlib import Path
import secrets
import torch
import os
from PIL import Image, ImageDraw, UnidentifiedImageError
base_url = "https://huggingface.co/spaces/Tonic1/Official-Qwen-VL-Chat"
model_name = "Qwen/Qwen-VL-Chat"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True).eval()
model.generation_config = GenerationConfig.from_pretrained(model_name, trust_remote_code=True)
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
task_history = []
BOX_TAG_PATTERN = r"<box>([\s\S]*?)</box>"
PUNCTUATION = "!?。"#$%&'()*+,-/:;<=>@[\]^_`{|}~⦅⦆「」、、〃》「」『』​``【oaicite:0】``​〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏."
def save_image(image_file) -> str:
upload_dir = "uploaded_images"
print("Creating upload directory if it doesn't exist.")
os.makedirs(upload_dir, exist_ok=True)
try:
print("Attempting to open and convert the image.")
image = Image.open(image_file).convert("RGB")
file_name = secrets.token_hex(10) + ".png"
file_path = os.path.join(upload_dir, file_name)
print(f"Generated file path: {file_path}")
print("Saving the image.")
image.save(file_path, format="PNG")
print("Image saved successfully.")
return file_path
except UnidentifiedImageError:
print("Error: The file is not a recognizable image.")
return None
except Exception as e:
print(f"An unexpected error occurred: {e}")
return None
def clean_response(response: str) -> str:
response = re.sub(r'<ref>(.*?)</ref>(?:<box>.*?</box>)*(?:<quad>.*?</quad>)*', r'\1', response).strip()
return response
def chat_with_model(image_path=None, text_query=None, history=None):
if image_path:
if os.path.isfile(image_path):
try:
with Image.open(image_path) as img:
print(f"Image {image_path} opened successfully.")
except UnidentifiedImageError:
print(f"Error: The file at {image_path} is not a recognizable image.")
return "Error: Uploaded file is not a recognizable image."
else:
print(f"File not found: {image_path}")
return "Error: Uploaded file not found."
else:
print("No image path provided, using text-only mode.")
text_input = text_query if text_query else ""
query_elements = [
{'image': image_path},
{'text': text_input}
]
try:
query = tokenizer.from_list_format(query_elements)
tokenized_inputs = tokenizer(query, return_tensors='pt').to(device)
output = model.generate(**tokenized_inputs)
response = tokenizer.decode(output[0], skip_special_tokens=True)
cleaned_response = clean_response(response)
return cleaned_response
except Exception as e:
print(f"An error occurred: {e}")
return "An error occurred while processing your request."
def draw_boxes(image_path, response):
image = Image.open(image_path)
draw = ImageDraw.Draw(image)
boxes = re.findall(r'<box>\((\d+),(\d+)\),\((\d+),(\d+)\)</box>', response)
for box in boxes:
x1, y1, x2, y2 = map(int, box)
draw.rectangle([x1, y1, x2, y2], outline="red", width=3)
return image
def process_input(text=None, file=None, task_history=None):
if task_history is None:
task_history = []
image_buffer = None
if file is not None:
image_buffer = save_image(file)
if image_buffer is None:
return [("bot", "Error: Uploaded file is not a recognizable image.")], task_history
response = chat_with_model(image=image_buffer, text_query=text, history=task_history)
task_history.append((text, response))
if "<box>" in response:
if image_path:
image_with_boxes = draw_boxes(image_path, response)
image_with_boxes_path = image_path.replace(".jpg", "_boxed.jpg")
image_with_boxes.save(image_with_boxes_path)
return [("bot", response), "image", image_with_boxes_path], task_history
else:
return [("bot", response), "text", None], task_history
else:
clean_response = re.sub(r'<ref>(.*?)</ref>(?:<box>.*?</box>)*(?:<quad>.*?</quad>)*', r'\1', response).strip()
return [("bot", clean_response)], task_history
# Define Gradio interface
with gr.Blocks() as demo:
gr.Markdown("""
# 🙋🏻♂️欢迎来到🌟Tonic 的🦆Qwen-VL-Chat🤩Bot!🚀
# 🙋🏻♂️Welcome toTonic's Qwen-VL-Chat Bot!
该WebUI基于Qwen-VL-Chat,实现聊天机器人功能。 但我必须解决它的很多问题,也许我也能获得一些荣誉。
Qwen-VL-Chat 是一种多模式输入模型。 您可以使用此空间来测试当前模型 [qwen/Qwen-VL-Chat](https://huggingface.co/qwen/Qwen-VL-Chat) 您也可以使用 🧑🏻🚀qwen/Qwen-VL -通过克隆这个空间来聊天🚀。 🧬🔬🔍 只需点击这里:[重复空间](https://huggingface.co/spaces/Tonic1/VLChat?duplicate=true)
加入我们:🌟TeamTonic🌟总是在制作很酷的演示! 在 👻Discord 上加入我们活跃的构建者🛠️社区:[Discord](https://discord.gg/nXx5wbX9) 在 🤗Huggingface 上:[TeamTonic](https://huggingface.co/TeamTonic) 和 [MultiTransformer](https:/ /huggingface.co/MultiTransformer) 在 🌐Github 上:[Polytonic](https://github.com/tonic-ai) 并为 🌟 [PolyGPT](https://github.com/tonic-ai/polygpt-alpha) 做出贡献 )
This WebUI is based on Qwen-VL-Chat, implementing chatbot functionalities. Qwen-VL-Chat is a multimodal input model. You can use this Space to test out the current model [qwen/Qwen-VL-Chat](https://huggingface.co/qwen/Qwen-VL-Chat) You can also use qwen/Qwen-VL-Chat🚀 by cloning this space. Simply click here: [Duplicate Space](https://huggingface.co/spaces/Tonic1/VLChat?duplicate=true)
Join us: TeamTonic is always making cool demos! Join our active builder's community on Discord: [Discord](https://discord.gg/nXx5wbX9) On Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On Github: [Polytonic](https://github.com/tonic-ai) & contribute to [PolyGPT](https://github.com/tonic-ai/polygpt-alpha)
""")
with gr.Row():
with gr.Column(scale=1):
chatbot = gr.Chatbot(label='Qwen-VL-Chat')
with gr.Column(scale=1):
with gr.Row():
query = gr.Textbox(lines=2, label='Input', placeholder="Type your message here...")
file_upload = gr.File(label="Upload Image")
submit_btn = gr.Button("Submit")
task_history = gr.State([])
submit_btn.click(
fn=process_input,
inputs=[query, file_upload, task_history],
outputs=[chatbot, task_history]
)
gr.Markdown("""
注意:此演示受 Qwen-VL 原始许可证的约束。我们强烈建议用户不要故意生成或允许他人故意生成有害内容,
包括仇恨言论、暴力、色情、欺骗等。(注:本演示受Qwen-VL许可协议约束,强烈建议用户不要传播或允许他人传播以下内容,包括但不限于仇恨言论、暴力、色情、欺诈相关的有害信息 .)
Note: This demo is governed by the original license of Qwen-VL. We strongly advise users not to knowingly generate or allow others to knowingly generate harmful content,
including hate speech, violence, pornography, deception, etc. (Note: This demo is subject to the license agreement of Qwen-VL. We strongly advise users not to disseminate or allow others to disseminate the following content, including but not limited to hate speech, violence, pornography, and fraud-related harmful information.)
""")
demo.queue().launch()
if __name__ == "__main__":
demo.launch() |