Spaces:
Paused
Paused
import transformers | |
from transformers import AutoConfig, AutoTokenizer, AutoModelForCausalLM | |
import torch | |
import gradio as gr | |
import json | |
import os | |
import shutil | |
import requests | |
# Define the device | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
#Define variables | |
temperature=0.4 | |
max_new_tokens=240 | |
top_p=0.92 | |
repetition_penalty=1.7 | |
#max_length=2048 | |
model_name = "OpenLLM-France/Claire-7B-0.1" | |
tokenizer = transformers.AutoTokenizer.from_pretrained(model_name) | |
model = transformers.AutoModelForCausalLM.from_pretrained(model_name, | |
device_map="auto", | |
torch_dtype=torch.bfloat16, | |
load_in_4bit=True # For efficient inference, if supported by the GPU card | |
) | |
model = model.to_bettertransformer() | |
# Class to encapsulate the Falcon chatbot | |
class FalconChatBot: | |
def __init__(self, system_prompt="Le dialogue suivant est une conversation"): | |
self.system_prompt = system_prompt | |
def process_history(self, history): | |
if history is None: | |
return [] | |
# Ensure that history is a list of dictionaries | |
if not isinstance(history, list): | |
return [] | |
# Filter out special commands from the history | |
filtered_history = [] | |
for message in history: | |
if isinstance(message, dict): | |
user_message = message.get("user", "") | |
assistant_message = message.get("assistant", "") | |
# Check if the user_message is not a special command | |
if not user_message.startswith("Protagoniste:"): | |
filtered_history.append({"user": user_message, "assistant": assistant_message}) | |
return filtered_history | |
def predict(self, user_message, assistant_message, history, temperature=0.4, max_new_tokens=700, top_p=0.99, repetition_penalty=1.9): | |
# Process the history to remove special commands | |
processed_history = self.process_history(history) | |
# Combine the user and assistant messages into a conversation | |
conversation = f"{self.system_prompt}\n {assistant_message if assistant_message else ''}\n {user_message}\n " | |
# Encode the conversation using the tokenizer | |
input_ids = tokenizer.encode(conversation, return_tensors="pt", add_special_tokens=False) | |
input_ids = input_ids.to(device) | |
# Generate a response using the Falcon model | |
response = model.generate( | |
input_ids=input_ids, | |
# max_length=max_length, | |
use_cache=False, | |
early_stopping=False, | |
bos_token_id=model.config.bos_token_id, | |
eos_token_id=model.config.eos_token_id, | |
pad_token_id=model.config.eos_token_id, | |
temperature=temperature, | |
do_sample=True, | |
max_new_tokens=max_new_tokens, | |
top_p=top_p, | |
repetition_penalty=repetition_penalty | |
) # Decode the generated response to text | |
# Decode the generated response to text | |
response_text = tokenizer.decode(response[0], skip_special_tokens=True) | |
# Update and return the history with the new conversation | |
updated_history = processed_history + [{"user": user_message, "assistant": response_text}] | |
return response_text, updated_history | |
# Create the Falcon chatbot instance | |
falcon_bot = FalconChatBot() | |
# Define the Gradio interface | |
title = "👋🏻Bienvenue à Tonic's 🌜🌚Claire Chat !" | |
description = "Vous pouvez utiliser [🌜🌚ClaireGPT](https://huggingface.co/OpenLLM-France/Claire-7B-0.1) Ou dupliquer pour l'uiliser localement ou sur huggingface! [Join me on Discord to build together](https://discord.gg/VqTxc76K3u)." | |
history = [ | |
{ | |
"user": "Le dialogue suivant est une conversation entre Emmanuel Macron et Elon Musk:", | |
"assistant": "Emmanuel Macron: Bonjour Monsieur Musk. Je vous remercie de me recevoir aujourd'hui." | |
}, | |
] | |
examples = [ | |
[ | |
"[Elon Musk:] - Bonjour Emmanuel. Enchanté de vous revoir.", # user_message | |
"[Emmanuel Macron:] - Je vois que vous avez effectué un voyage dans la région de la Gascogne.", # assistant_message | |
history, # history | |
0.4, # temperature | |
200, # max_new_tokens | |
0.90, # top_p | |
1.9, # repetition_penalty | |
] | |
] | |
additional_inputs=[ | |
gr.Textbox("", label="Introduisez Un Autre Personnage Ici ou Mettez En Scene"), | |
gr.Slider( | |
label="Temperature", | |
value=0.7, # Default value | |
minimum=0.05, | |
maximum=1.0, | |
step=0.05, | |
interactive=True, | |
info="Higher values produce more diverse outputs", | |
), | |
gr.Slider( | |
label="Max new tokens", | |
value=100, # Default value | |
minimum=25, | |
maximum=256, | |
step=1, | |
interactive=True, | |
info="The maximum numbers of new tokens", | |
), | |
gr.Slider( | |
label="Top-p (nucleus sampling)", | |
value=0.90, | |
minimum=0.01, | |
maximum=0.99, | |
step=0.05, | |
interactive=True, | |
info="Higher values sample more low-probability tokens", | |
), | |
gr.Slider( | |
label="Repetition penalty", | |
value=1.9, | |
minimum=1.0, | |
maximum=2.0, | |
step=0.05, | |
interactive=True, | |
info="Penalize repeated tokens", | |
) | |
] | |
iface = gr.Interface( | |
fn=falcon_bot.predict, | |
title=title, | |
description=description, | |
examples=examples, | |
inputs=[ | |
gr.inputs.Textbox(label="Utilisez se format pour initier une conversation [Personage:]", type="text", lines=5), | |
] + additional_inputs, | |
outputs="text", | |
theme="ParityError/Anime" | |
) | |
# Launch the Gradio interface for the Falcon model | |
iface.launch() |