Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -60,34 +60,23 @@ class FalconChatBot:
|
|
60 |
filtered_history.append({"user": user_message, "assistant": assistant_message})
|
61 |
return filtered_history
|
62 |
|
63 |
-
def predict(self,
|
64 |
|
65 |
# Process the history to remove special commands
|
66 |
-
|
67 |
-
|
68 |
# Combine the user and assistant messages into a conversation
|
69 |
-
|
70 |
-
|
71 |
# Encode the conversation using the tokenizer
|
72 |
-
|
73 |
-
|
74 |
# Generate a response using the Falcon model
|
75 |
-
|
76 |
-
|
77 |
-
# Generate the formatted conversation in Falcon message format
|
78 |
-
conversation = f"{system_prompt}\n"
|
79 |
-
for message in processed_history:
|
80 |
-
user_message = message["user"]
|
81 |
-
assistant_message = message["assistant"]
|
82 |
-
conversation += f"Falcon:{' ' + assistant_message if assistant_message else ''} User: {user_message}\n Falcon:\n"
|
83 |
# Decode the generated response to text
|
84 |
-
|
85 |
-
|
86 |
# Append the Falcon-like conversation to the history
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
|
92 |
|
93 |
# Create the Falcon chatbot instance
|
@@ -99,17 +88,11 @@ description = "You can use this Space to test out the GaiaMiniMed model [(Tonic/
|
|
99 |
|
100 |
examples = [
|
101 |
[
|
102 |
-
"Assistant is a public health and medical expert ready to help the user.",
|
103 |
"Hi there, I have a question!",
|
104 |
"My name is Gaia, I'm a health and sanitation expert ready to answer your medical questions.",
|
105 |
-
"", 0.4,
|
106 |
-
]
|
107 |
-
[
|
108 |
-
"Assistant is a public health and medical expert ready to help the user.",
|
109 |
-
"What is the proper treatment for buccal herpes?",
|
110 |
-
None,
|
111 |
-
"", 0.2, 500, 0.92, 1.7
|
112 |
-
]
|
113 |
]
|
114 |
|
115 |
|
|
|
60 |
filtered_history.append({"user": user_message, "assistant": assistant_message})
|
61 |
return filtered_history
|
62 |
|
63 |
+
def predict(self, user_message, assistant_message, history, temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty):
|
64 |
|
65 |
# Process the history to remove special commands
|
66 |
+
processed_history = self.process_history(history)
|
|
|
67 |
# Combine the user and assistant messages into a conversation
|
68 |
+
conversation = f"{self.system_prompt}\nFalcon: {assistant_message if assistant_message else ''} User: {user_message}\nFalcon:\n"
|
|
|
69 |
# Encode the conversation using the tokenizer
|
70 |
+
input_ids = tokenizer.encode(conversation, return_tensors="pt", add_special_tokens=False)
|
|
|
71 |
# Generate a response using the Falcon model
|
72 |
+
response = peft_model.generate(input_ids=input_ids, max_length=max_length, use_cache=False, early_stopping=False, bos_token_id=peft_model.config.bos_token_id, eos_token_id=peft_model.config.eos_token_id, pad_token_id=peft_model.config.eos_token_id, temperature=0.4, do_sample=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
# Decode the generated response to text
|
74 |
+
response_text = tokenizer.decode(response[0], skip_special_tokens=True)
|
|
|
75 |
# Append the Falcon-like conversation to the history
|
76 |
+
self.history.append(conversation)
|
77 |
+
self.history.append(response_text)
|
78 |
+
|
79 |
+
return response_text
|
80 |
|
81 |
|
82 |
# Create the Falcon chatbot instance
|
|
|
88 |
|
89 |
examples = [
|
90 |
[
|
91 |
+
"Assistant is a public health and medical expert named Gaia ready to help the user.",
|
92 |
"Hi there, I have a question!",
|
93 |
"My name is Gaia, I'm a health and sanitation expert ready to answer your medical questions.",
|
94 |
+
"Assistant is a medical and sanitation question expert trained to answer medical questions", 0.4, 700, 0.90, 1.9
|
95 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
]
|
97 |
|
98 |
|