Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -21,9 +21,10 @@ model_name = "OpenLLM-France/Claire-7B-0.1"
|
|
21 |
tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)
|
22 |
model = transformers.AutoModelForCausalLM.from_pretrained(model_name,
|
23 |
device_map="auto",
|
24 |
-
torch_dtype=torch.bfloat16,
|
25 |
load_in_4bit=True # For efficient inference, if supported by the GPU card
|
26 |
)
|
|
|
27 |
|
28 |
# Class to encapsulate the Falcon chatbot
|
29 |
class FalconChatBot:
|
@@ -50,22 +51,35 @@ class FalconChatBot:
|
|
50 |
return filtered_history
|
51 |
|
52 |
def predict(self, user_message, assistant_message, history, temperature=0.4, max_new_tokens=700, top_p=0.99, repetition_penalty=1.9):
|
53 |
-
|
54 |
# Process the history to remove special commands
|
55 |
processed_history = self.process_history(history)
|
56 |
# Combine the user and assistant messages into a conversation
|
57 |
-
conversation = f"{self.system_prompt}\
|
58 |
# Encode the conversation using the tokenizer
|
59 |
input_ids = tokenizer.encode(conversation, return_tensors="pt", add_special_tokens=False)
|
60 |
# Generate a response using the Falcon model
|
61 |
-
response = model.generate(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
# Decode the generated response to text
|
63 |
response_text = tokenizer.decode(response[0], skip_special_tokens=True)
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
return response_text
|
69 |
|
70 |
|
71 |
# Create the Falcon chatbot instance
|
|
|
21 |
tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)
|
22 |
model = transformers.AutoModelForCausalLM.from_pretrained(model_name,
|
23 |
device_map="auto",
|
24 |
+
torch_dtype=torch.bfloat16.to("cuda"),
|
25 |
load_in_4bit=True # For efficient inference, if supported by the GPU card
|
26 |
)
|
27 |
+
model = model.to_bettertransformer()
|
28 |
|
29 |
# Class to encapsulate the Falcon chatbot
|
30 |
class FalconChatBot:
|
|
|
51 |
return filtered_history
|
52 |
|
53 |
def predict(self, user_message, assistant_message, history, temperature=0.4, max_new_tokens=700, top_p=0.99, repetition_penalty=1.9):
|
54 |
+
input_ids = input_ids.to(device)
|
55 |
# Process the history to remove special commands
|
56 |
processed_history = self.process_history(history)
|
57 |
# Combine the user and assistant messages into a conversation
|
58 |
+
conversation = f"{self.system_prompt}\n {assistant_message if assistant_message else ''}\n {user_message}\n "
|
59 |
# Encode the conversation using the tokenizer
|
60 |
input_ids = tokenizer.encode(conversation, return_tensors="pt", add_special_tokens=False)
|
61 |
# Generate a response using the Falcon model
|
62 |
+
response = model.generate(
|
63 |
+
input_ids=input_ids,
|
64 |
+
max_length=max_length,
|
65 |
+
use_cache=False,
|
66 |
+
early_stopping=False,
|
67 |
+
bos_token_id=model.config.bos_token_id,
|
68 |
+
eos_token_id=model.config.eos_token_id,
|
69 |
+
pad_token_id=model.config.eos_token_id,
|
70 |
+
temperature=temperature,
|
71 |
+
do_sample=True,
|
72 |
+
max_new_tokens=max_new_tokens,
|
73 |
+
top_p=top_p,
|
74 |
+
repetition_penalty=repetition_penalty
|
75 |
+
) # Decode the generated response to text
|
76 |
+
|
77 |
# Decode the generated response to text
|
78 |
response_text = tokenizer.decode(response[0], skip_special_tokens=True)
|
79 |
+
|
80 |
+
# Update and return the history with the new conversation
|
81 |
+
updated_history = processed_history + [{"user": user_message, "assistant": response_text}]
|
82 |
+
return response_text, updated_history
|
|
|
83 |
|
84 |
|
85 |
# Create the Falcon chatbot instance
|