import transformers from transformers import AutoConfig, AutoTokenizer, AutoModelForCausalLM import torch import gradio as gr import json import os import shutil import requests # Define the device device = "cuda" if torch.cuda.is_available() else "cpu" #Define variables temperature=0.4 max_new_tokens=240 top_p=0.92 repetition_penalty=1.7 max_length=2048 model_name = "OpenLLM-France/Claire-7B-0.1" tokenizer = transformers.AutoTokenizer.from_pretrained(model_name) model = transformers.AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype=torch.bfloat16, load_in_4bit=True # For efficient inference, if supported by the GPU card ) model = model.to_bettertransformer() # Class to encapsulate the Falcon chatbot class FalconChatBot: def __init__(self, system_prompt="Le dialogue suivant est une conversation"): self.system_prompt = system_prompt def process_history(self, history): if history is None: return [] # Ensure that history is a list of dictionaries if not isinstance(history, list): return [] # Filter out special commands from the history filtered_history = [] for message in history: if isinstance(message, dict): user_message = message.get("user", "") assistant_message = message.get("assistant", "") # Check if the user_message is not a special command if not user_message.startswith("Protagoniste:"): filtered_history.append({"user": user_message, "assistant": assistant_message}) return filtered_history def predict(self, user_message, assistant_message, history, temperature=0.4, max_new_tokens=700, top_p=0.99, repetition_penalty=1.9): # Process the history to remove special commands processed_history = self.process_history(history) # Combine the user and assistant messages into a conversation conversation = f"{self.system_prompt}\n {assistant_message if assistant_message else ''}\n {user_message}\n " # Encode the conversation using the tokenizer input_ids = tokenizer.encode(conversation, return_tensors="pt", add_special_tokens=False) input_ids = input_ids.to(device) # Generate a response using the Falcon model response = model.generate( input_ids=input_ids, max_length=max_length, use_cache=False, early_stopping=False, bos_token_id=model.config.bos_token_id, eos_token_id=model.config.eos_token_id, pad_token_id=model.config.eos_token_id, temperature=temperature, do_sample=True, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty ) # Decode the generated response to text # Decode the generated response to text response_text = tokenizer.decode(response[0], skip_special_tokens=True) # Update and return the history with the new conversation updated_history = processed_history + [{"user": user_message, "assistant": response_text}] return response_text, updated_history # Create the Falcon chatbot instance falcon_bot = FalconChatBot() # Define the Gradio interface title = "👋🏻Bienvenue à Tonic's 🌜🌚Claire Chat !" description = "Vous pouvez utiliser [🌜🌚ClaireGPT](https://huggingface.co/OpenLLM-France/Claire-7B-0.1) Ou dupliquer pour l'uiliser localement ou sur huggingface! [Join me on Discord to build together](https://discord.gg/VqTxc76K3u)." history = [ {"user": "Le dialogue suivant est une conversation entre Emmanuel Macron et Elon Musk:", "assistant": "Emmanuel Macron: Bonjour Monsieur Musk. Je vous remercie de me recevoir aujourd'hui."},] examples = [ [ "[Elon Musk:] - Bonjour Emmanuel. Enchanté de vous revoir.", # user_message "[Emmanuel Macron:] - Je vois que vous avez effectué un voyage dans la région de la Gascogne.", # assistant_message [], # history 0.4, # temperature 700, # max_new_tokens 0.90, # top_p 1.9, # repetition_penalty ] ] additional_inputs=[ gr.Textbox("", label="Introduisez Un Autre Personnage Ici ou Mettez En Scene"), gr.Slider( label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs", ), gr.Slider( label="Max new tokens", value=256, minimum=0, maximum=3000, step=64, interactive=True, info="The maximum numbers of new tokens", ), gr.Slider( label="Top-p (nucleus sampling)", value=0.90, minimum=0.01, maximum=0.99, step=0.05, interactive=True, info="Higher values sample more low-probability tokens", ), gr.Slider( label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens", ) ] iface = gr.Interface( fn=falcon_bot.predict, title=title, description=description, examples=examples, inputs=[ gr.inputs.Textbox(label="Utilisez se format pour initier une conversation [Personage:]", type="text", lines=5), ] + additional_inputs, outputs="text", theme="ParityError/Anime" ) # Launch the Gradio interface for the Falcon model iface.launch()