File size: 24,746 Bytes
7de6816
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
# Copyright 2023 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


from __future__ import annotations
from typing import Any
import torch
import numpy as np
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline
from diffusers.image_processor import PipelineImageInput
from diffusers.utils.torch_utils import is_compiled_module, is_torch_version
from transformers import DPTImageProcessor, DPTForDepthEstimation
from diffusers import StableDiffusionPanoramaPipeline
from PIL import Image
import copy

T = torch.Tensor
TN = T | None


def get_depth_map(image: Image, feature_processor: DPTImageProcessor, depth_estimator: DPTForDepthEstimation) -> Image:
    image = feature_processor(images=image, return_tensors="pt").pixel_values.to("cuda")
    with torch.no_grad(), torch.autocast("cuda"):
        depth_map = depth_estimator(image).predicted_depth

    depth_map = torch.nn.functional.interpolate(
        depth_map.unsqueeze(1),
        size=(1024, 1024),
        mode="bicubic",
        align_corners=False,
    )
    depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True)
    depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True)
    depth_map = (depth_map - depth_min) / (depth_max - depth_min)
    image = torch.cat([depth_map] * 3, dim=1)

    image = image.permute(0, 2, 3, 1).cpu().numpy()[0]
    image = Image.fromarray((image * 255.0).clip(0, 255).astype(np.uint8))
    return image


def concat_zero_control(control_reisduel: T) -> T:
    b = control_reisduel.shape[0] // 2
    zerso_reisduel = torch.zeros_like(control_reisduel[0:1])
    return torch.cat((zerso_reisduel, control_reisduel[:b], zerso_reisduel, control_reisduel[b::]))


@torch.no_grad()
def controlnet_call(
    pipeline: StableDiffusionXLControlNetPipeline,
    prompt: str | list[str] = None,
    prompt_2: str | list[str] | None = None,
    image: PipelineImageInput = None,
    height: int | None = None,
    width: int | None = None,
    num_inference_steps: int = 50,
    guidance_scale: float = 5.0,
    negative_prompt: str | list[str] | None = None,
    negative_prompt_2: str | list[str] | None = None,
    num_images_per_prompt: int = 1,
    eta: float = 0.0,
    generator: torch.Generator | None = None,
    latents: TN = None,
    prompt_embeds: TN = None,
    negative_prompt_embeds: TN = None,
    pooled_prompt_embeds: TN = None,
    negative_pooled_prompt_embeds: TN = None,
    cross_attention_kwargs: dict[str, Any] | None = None,
    controlnet_conditioning_scale: float | list[float] = 1.0,
    control_guidance_start: float | list[float] = 0.0,
    control_guidance_end: float | list[float] = 1.0,
    original_size: tuple[int, int] = None,
    crops_coords_top_left: tuple[int, int] = (0, 0),
    target_size: tuple[int, int] | None = None,
    negative_original_size: tuple[int, int] | None = None,
    negative_crops_coords_top_left: tuple[int, int] = (0, 0),
    negative_target_size:tuple[int, int] | None = None,
    clip_skip: int | None = None,
) -> list[Image]:
    controlnet = pipeline.controlnet._orig_mod if is_compiled_module(pipeline.controlnet) else pipeline.controlnet

    # align format for control guidance
    if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
        control_guidance_start = len(control_guidance_end) * [control_guidance_start]
    elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
        control_guidance_end = len(control_guidance_start) * [control_guidance_end]
    elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
        mult = 1
        control_guidance_start, control_guidance_end = (
            mult * [control_guidance_start],
            mult * [control_guidance_end],
        )

    # 1. Check inputs. Raise error if not correct
    pipeline.check_inputs(
        prompt,
        prompt_2,
        image,
        1,
        negative_prompt,
        negative_prompt_2,
        prompt_embeds,
        negative_prompt_embeds,
        pooled_prompt_embeds,
        negative_pooled_prompt_embeds,
        controlnet_conditioning_scale,
        control_guidance_start,
        control_guidance_end,
    )

    pipeline._guidance_scale = guidance_scale

    # 2. Define call parameters
    if prompt is not None and isinstance(prompt, str):
        batch_size = 1
    elif prompt is not None and isinstance(prompt, list):
        batch_size = len(prompt)
    else:
        batch_size = prompt_embeds.shape[0]

    device = pipeline._execution_device

    # 3. Encode input prompt
    text_encoder_lora_scale = (
        cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
    )
    (
        prompt_embeds,
        negative_prompt_embeds,
        pooled_prompt_embeds,
        negative_pooled_prompt_embeds,
    ) = pipeline.encode_prompt(
        prompt,
        prompt_2,
        device,
        1,
        True,
        negative_prompt,
        negative_prompt_2,
        prompt_embeds=prompt_embeds,
        negative_prompt_embeds=negative_prompt_embeds,
        pooled_prompt_embeds=pooled_prompt_embeds,
        negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
        lora_scale=text_encoder_lora_scale,
        clip_skip=clip_skip,
    )

    # 4. Prepare image
    if isinstance(controlnet, ControlNetModel):
        image = pipeline.prepare_image(
            image=image,
            width=width,
            height=height,
            batch_size=1,
            num_images_per_prompt=1,
            device=device,
            dtype=controlnet.dtype,
            do_classifier_free_guidance=True,
            guess_mode=False,
        )
        height, width = image.shape[-2:]
        image = torch.stack([image[0]] * num_images_per_prompt + [image[1]] * num_images_per_prompt)
    else:
        assert False
    # 5. Prepare timesteps
    pipeline.scheduler.set_timesteps(num_inference_steps, device=device)
    timesteps = pipeline.scheduler.timesteps

    # 6. Prepare latent variables
    num_channels_latents = pipeline.unet.config.in_channels
    latents = pipeline.prepare_latents(
        1 + num_images_per_prompt,
        num_channels_latents,
        height,
        width,
        prompt_embeds.dtype,
        device,
        generator,
        latents,
    )
        
    # 6.5 Optionally get Guidance Scale Embedding
    timestep_cond = None

    # 7. Prepare extra step kwargs.
    extra_step_kwargs = pipeline.prepare_extra_step_kwargs(generator, eta)

    # 7.1 Create tensor stating which controlnets to keep
    controlnet_keep = []
    for i in range(len(timesteps)):
        keeps = [
            1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
            for s, e in zip(control_guidance_start, control_guidance_end)
        ]
        controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps)

    # 7.2 Prepare added time ids & embeddings
    if isinstance(image, list):
        original_size = original_size or image[0].shape[-2:]
    else:
        original_size = original_size or image.shape[-2:]
    target_size = target_size or (height, width)

    add_text_embeds = pooled_prompt_embeds
    if pipeline.text_encoder_2 is None:
        text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
    else:
        text_encoder_projection_dim = pipeline.text_encoder_2.config.projection_dim

    add_time_ids = pipeline._get_add_time_ids(
        original_size,
        crops_coords_top_left,
        target_size,
        dtype=prompt_embeds.dtype,
        text_encoder_projection_dim=text_encoder_projection_dim,
    )

    if negative_original_size is not None and negative_target_size is not None:
        negative_add_time_ids = pipeline._get_add_time_ids(
            negative_original_size,
            negative_crops_coords_top_left,
            negative_target_size,
            dtype=prompt_embeds.dtype,
            text_encoder_projection_dim=text_encoder_projection_dim,
        )
    else:
        negative_add_time_ids = add_time_ids

    prompt_embeds = torch.stack([prompt_embeds[0]] + [prompt_embeds[1]] * num_images_per_prompt)
    negative_prompt_embeds = torch.stack([negative_prompt_embeds[0]] + [negative_prompt_embeds[1]] * num_images_per_prompt)
    negative_pooled_prompt_embeds = torch.stack([negative_pooled_prompt_embeds[0]] + [negative_pooled_prompt_embeds[1]] * num_images_per_prompt)
    add_text_embeds = torch.stack([add_text_embeds[0]] + [add_text_embeds[1]] * num_images_per_prompt)
    prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
    add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
    add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)

    prompt_embeds = prompt_embeds.to(device)
    add_text_embeds = add_text_embeds.to(device)
    add_time_ids = add_time_ids.to(device).repeat(1 + num_images_per_prompt, 1)
    batch_size = num_images_per_prompt + 1
    # 8. Denoising loop
    num_warmup_steps = len(timesteps) - num_inference_steps * pipeline.scheduler.order
    is_unet_compiled = is_compiled_module(pipeline.unet)
    is_controlnet_compiled = is_compiled_module(pipeline.controlnet)
    is_torch_higher_equal_2_1 = is_torch_version(">=", "2.1")
    added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
    controlnet_prompt_embeds = torch.cat((prompt_embeds[1:batch_size], prompt_embeds[1:batch_size]))
    controlnet_added_cond_kwargs = {key: torch.cat((item[1:batch_size,], item[1:batch_size])) for key, item in added_cond_kwargs.items()}
    with pipeline.progress_bar(total=num_inference_steps) as progress_bar:
        for i, t in enumerate(timesteps):
            # Relevant thread:
            # https://dev-discuss.pytorch.org/t/cudagraphs-in-pytorch-2-0/1428
            if (is_unet_compiled and is_controlnet_compiled) and is_torch_higher_equal_2_1:
                torch._inductor.cudagraph_mark_step_begin()
            # expand the latents if we are doing classifier free guidance
            latent_model_input = torch.cat([latents] * 2)
            latent_model_input = pipeline.scheduler.scale_model_input(latent_model_input, t)           

            # controlnet(s) inference
            control_model_input = torch.cat((latent_model_input[1:batch_size,], latent_model_input[batch_size+1:]))

            if isinstance(controlnet_keep[i], list):
                cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
            else:
                controlnet_cond_scale = controlnet_conditioning_scale
                if isinstance(controlnet_cond_scale, list):
                    controlnet_cond_scale = controlnet_cond_scale[0]
                cond_scale = controlnet_cond_scale * controlnet_keep[i]
            if cond_scale > 0:
                down_block_res_samples, mid_block_res_sample = pipeline.controlnet(
                    control_model_input,
                    t,
                    encoder_hidden_states=controlnet_prompt_embeds,
                    controlnet_cond=image,
                    conditioning_scale=cond_scale,
                    guess_mode=False,
                    added_cond_kwargs=controlnet_added_cond_kwargs,
                    return_dict=False,
                )
    
                mid_block_res_sample = concat_zero_control(mid_block_res_sample)
                down_block_res_samples =  [concat_zero_control(down_block_res_sample) for down_block_res_sample in down_block_res_samples]
            else:
                mid_block_res_sample = down_block_res_samples = None
            # predict the noise residual
            noise_pred = pipeline.unet(
                latent_model_input,
                t,
                encoder_hidden_states=prompt_embeds,
                timestep_cond=timestep_cond,
                cross_attention_kwargs=cross_attention_kwargs,
                down_block_additional_residuals=down_block_res_samples,
                mid_block_additional_residual=mid_block_res_sample,
                added_cond_kwargs=added_cond_kwargs,
                return_dict=False,
            )[0]

            # perform guidance
            noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
            noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

            # compute the previous noisy sample x_t -> x_t-1
            latents = pipeline.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]

            if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % pipeline.scheduler.order == 0):
                progress_bar.update()
               
    # manually for max memory savings
    if pipeline.vae.dtype == torch.float16 and pipeline.vae.config.force_upcast:
        pipeline.upcast_vae()
        latents = latents.to(next(iter(pipeline.vae.post_quant_conv.parameters())).dtype)

    # make sure the VAE is in float32 mode, as it overflows in float16
    needs_upcasting = pipeline.vae.dtype == torch.float16 and pipeline.vae.config.force_upcast

    if needs_upcasting:
        pipeline.upcast_vae()
        latents = latents.to(next(iter(pipeline.vae.post_quant_conv.parameters())).dtype)

    image = pipeline.vae.decode(latents / pipeline.vae.config.scaling_factor, return_dict=False)[0]

    # cast back to fp16 if needed
    if needs_upcasting:
        pipeline.vae.to(dtype=torch.float16)
 
    if pipeline.watermark is not None:
        image = pipeline.watermark.apply_watermark(image)

    image = pipeline.image_processor.postprocess(image, output_type='pil')

    # Offload all models
    pipeline.maybe_free_model_hooks()
    return image


@torch.no_grad()
def panorama_call(
        pipeline: StableDiffusionPanoramaPipeline,
        prompt: list[str],
        height: int | None = 512,
        width: int | None = 2048,
        num_inference_steps: int = 50,
        guidance_scale: float = 7.5,
        view_batch_size: int = 1,
        negative_prompt: str | list[str] | None = None,
        num_images_per_prompt: int | None = 1,
        eta: float = 0.0,
        generator: torch.Generator | None = None,
        reference_latent: TN = None,
        latents: TN = None,
        prompt_embeds: TN = None,
        negative_prompt_embeds: TN = None,
        cross_attention_kwargs: dict[str, Any] | None = None,
        circular_padding: bool = False,
        clip_skip: int | None = None,
        stride=8
) -> list[Image]:
    # 0. Default height and width to unet
    height = height or pipeline.unet.config.sample_size * pipeline.vae_scale_factor
    width = width or pipeline.unet.config.sample_size * pipeline.vae_scale_factor

    # 1. Check inputs. Raise error if not correct
    pipeline.check_inputs(
        prompt, height, width, 1, negative_prompt, prompt_embeds, negative_prompt_embeds
    )

    device = pipeline._execution_device
    # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
    # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
    # corresponds to doing no classifier free guidance.
    do_classifier_free_guidance = guidance_scale > 1.0

    # 3. Encode input prompt
    text_encoder_lora_scale = (
        cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
    )
    prompt_embeds, negative_prompt_embeds = pipeline.encode_prompt(
        prompt,
        device,
        num_images_per_prompt,
        do_classifier_free_guidance,
        negative_prompt,
        prompt_embeds=prompt_embeds,
        negative_prompt_embeds=negative_prompt_embeds,
        lora_scale=text_encoder_lora_scale,
        clip_skip=clip_skip,
    )
    # For classifier free guidance, we need to do two forward passes.
    # Here we concatenate the unconditional and text embeddings into a single batch
    # to avoid doing two forward passes

    # 4. Prepare timesteps
    pipeline.scheduler.set_timesteps(num_inference_steps, device=device)
    timesteps = pipeline.scheduler.timesteps

    # 5. Prepare latent variables
    num_channels_latents = pipeline.unet.config.in_channels
    latents = pipeline.prepare_latents(
        1,
        num_channels_latents,
        height,
        width,
        prompt_embeds.dtype,
        device,
        generator,
        latents,
    )
    if reference_latent is None:
        reference_latent = torch.randn(1, 4, pipeline.unet.config.sample_size, pipeline.unet.config.sample_size,
                                       generator=generator)
    reference_latent = reference_latent.to(device=device, dtype=pipeline.unet.dtype)
    # 6. Define panorama grid and initialize views for synthesis.
    # prepare batch grid
    views = pipeline.get_views(height, width, circular_padding=circular_padding, stride=stride)
    views_batch = [views[i: i + view_batch_size] for i in range(0, len(views), view_batch_size)]
    views_scheduler_status = [copy.deepcopy(pipeline.scheduler.__dict__)] * len(views_batch)
    count = torch.zeros_like(latents)
    value = torch.zeros_like(latents)
    # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
    extra_step_kwargs = pipeline.prepare_extra_step_kwargs(generator, eta)

    # 8. Denoising loop
    # Each denoising step also includes refinement of the latents with respect to the
    # views.
    num_warmup_steps = len(timesteps) - num_inference_steps * pipeline.scheduler.order

    negative_prompt_embeds = torch.cat([negative_prompt_embeds[:1],
                                        *[negative_prompt_embeds[1:]] * view_batch_size]
                                       )
    prompt_embeds = torch.cat([prompt_embeds[:1],
                               *[prompt_embeds[1:]] * view_batch_size]
                              )

    with pipeline.progress_bar(total=num_inference_steps) as progress_bar:
        for i, t in enumerate(timesteps):
            count.zero_()
            value.zero_()

            # generate views
            # Here, we iterate through different spatial crops of the latents and denoise them. These
            # denoised (latent) crops are then averaged to produce the final latent
            # for the current timestep via MultiDiffusion. Please see Sec. 4.1 in the
            # MultiDiffusion paper for more details: https://arxiv.org/abs/2302.08113
            # Batch views denoise
            for j, batch_view in enumerate(views_batch):
                vb_size = len(batch_view)
                # get the latents corresponding to the current view coordinates
                if circular_padding:
                    latents_for_view = []
                    for h_start, h_end, w_start, w_end in batch_view:
                        if w_end > latents.shape[3]:
                            # Add circular horizontal padding
                            latent_view = torch.cat(
                                (
                                    latents[:, :, h_start:h_end, w_start:],
                                    latents[:, :, h_start:h_end, : w_end - latents.shape[3]],
                                ),
                                dim=-1,
                            )
                        else:
                            latent_view = latents[:, :, h_start:h_end, w_start:w_end]
                        latents_for_view.append(latent_view)
                    latents_for_view = torch.cat(latents_for_view)
                else:
                    latents_for_view = torch.cat(
                        [
                            latents[:, :, h_start:h_end, w_start:w_end]
                            for h_start, h_end, w_start, w_end in batch_view
                        ]
                    )
                # rematch block's scheduler status
                pipeline.scheduler.__dict__.update(views_scheduler_status[j])

                # expand the latents if we are doing classifier free guidance
                latent_reference_plus_view = torch.cat((reference_latent, latents_for_view))
                latent_model_input = latent_reference_plus_view.repeat(2, 1, 1, 1)
                prompt_embeds_input = torch.cat([negative_prompt_embeds[: 1 + vb_size],
                                                 prompt_embeds[: 1 + vb_size]]
                                                )
                latent_model_input = pipeline.scheduler.scale_model_input(latent_model_input, t)
                # predict the noise residual
                # return
                noise_pred = pipeline.unet(
                    latent_model_input,
                    t,
                    encoder_hidden_states=prompt_embeds_input,
                    cross_attention_kwargs=cross_attention_kwargs,
                ).sample

                # perform guidance

                noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
                # compute the previous noisy sample x_t -> x_t-1
                latent_reference_plus_view = pipeline.scheduler.step(
                    noise_pred, t, latent_reference_plus_view, **extra_step_kwargs
                ).prev_sample
                if j == len(views_batch) - 1:
                    reference_latent = latent_reference_plus_view[:1]
                latents_denoised_batch = latent_reference_plus_view[1:]
                # save views scheduler status after sample
                views_scheduler_status[j] = copy.deepcopy(pipeline.scheduler.__dict__)

                # extract value from batch
                for latents_view_denoised, (h_start, h_end, w_start, w_end) in zip(
                        latents_denoised_batch.chunk(vb_size), batch_view
                ):
                    if circular_padding and w_end > latents.shape[3]:
                        # Case for circular padding
                        value[:, :, h_start:h_end, w_start:] += latents_view_denoised[
                                                                :, :, h_start:h_end, : latents.shape[3] - w_start
                                                                ]
                        value[:, :, h_start:h_end, : w_end - latents.shape[3]] += latents_view_denoised[
                                                                                  :, :, h_start:h_end,
                                                                                  latents.shape[3] - w_start:
                                                                                  ]
                        count[:, :, h_start:h_end, w_start:] += 1
                        count[:, :, h_start:h_end, : w_end - latents.shape[3]] += 1
                    else:
                        value[:, :, h_start:h_end, w_start:w_end] += latents_view_denoised
                        count[:, :, h_start:h_end, w_start:w_end] += 1

            # take the MultiDiffusion step. Eq. 5 in MultiDiffusion paper: https://arxiv.org/abs/2302.08113
            latents = torch.where(count > 0, value / count, value)

            # call the callback, if provided
            if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % pipeline.scheduler.order == 0):
                progress_bar.update()

    if circular_padding:
        image = pipeline.decode_latents_with_padding(latents)
    else:
        image = pipeline.vae.decode(latents / pipeline.vae.config.scaling_factor, return_dict=False)[0]
    reference_image = pipeline.vae.decode(reference_latent / pipeline.vae.config.scaling_factor, return_dict=False)[0]
    # image, has_nsfw_concept = pipeline.run_safety_checker(image, device, prompt_embeds.dtype)
    # reference_image, _ = pipeline.run_safety_checker(reference_image, device, prompt_embeds.dtype)

    image = pipeline.image_processor.postprocess(image, output_type='pil', do_denormalize=[True])
    reference_image = pipeline.image_processor.postprocess(reference_image, output_type='pil', do_denormalize=[True])
    pipeline.maybe_free_model_hooks()
    return reference_image + image