Tonic commited on
Commit
3d446a2
β€’
1 Parent(s): 959c01c

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +75 -0
app.py ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from diffusers import StableDiffusionXLPipeline, DDIMScheduler
3
+ import torch
4
+ import sa_handler
5
+ import inversion
6
+ import numpy as np
7
+ from diffusers.utils import load_image
8
+ from PIL import Image
9
+ import io
10
+
11
+ # Model Load
12
+ scheduler = DDIMScheduler(
13
+ beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear",
14
+ clip_sample=False, set_alpha_to_one=False)
15
+
16
+ pipeline = StableDiffusionXLPipeline.from_pretrained(
17
+ "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16",
18
+ use_safetensors=True,
19
+ scheduler=scheduler
20
+ ).to("cuda")
21
+
22
+ # Function to process the image
23
+ def process_image(image, prompt, style):
24
+ src_prompt = f'Man laying in a bed, {style}.'
25
+
26
+ num_inference_steps = 50
27
+ x0 = np.array(Image.fromarray(image).resize((1024, 1024)))
28
+ zts = inversion.ddim_inversion(pipeline, x0, src_prompt, num_inference_steps, 2)
29
+
30
+ prompts = [
31
+ src_prompt,
32
+ f"{prompt}, {style}."
33
+ ]
34
+
35
+ shared_score_shift = np.log(2)
36
+ shared_score_scale = 1.0
37
+
38
+ handler = sa_handler.Handler(pipeline)
39
+ sa_args = sa_handler.StyleAlignedArgs(
40
+ share_group_norm=True, share_layer_norm=True, share_attention=True,
41
+ adain_queries=True, adain_keys=True, adain_values=False,
42
+ shared_score_shift=shared_score_shift, shared_score_scale=shared_score_scale,)
43
+ handler.register(sa_args)
44
+
45
+ zT, inversion_callback = inversion.make_inversion_callback(zts, offset=5)
46
+
47
+ g_cpu = torch.Generator(device='cpu')
48
+ g_cpu.manual_seed(10)
49
+
50
+ latents = torch.randn(len(prompts), 4, 128, 128, device='cpu', generator=g_cpu,
51
+ dtype=pipeline.unet.dtype,).to('cuda:0')
52
+ latents[0] = zT
53
+
54
+ images_a = pipeline(prompts, latents=latents,
55
+ callback_on_step_end=inversion_callback,
56
+ num_inference_steps=num_inference_steps, guidance_scale=10.0).images
57
+
58
+ handler.remove()
59
+
60
+ return Image.fromarray(images_a[1])
61
+
62
+ # Gradio interface
63
+ iface = gr.Interface(
64
+ fn=process_image,
65
+ inputs=[
66
+ gr.inputs.Image(type="numpy"),
67
+ gr.inputs.Textbox(label="Enter your prompt"),
68
+ gr.inputs.Textbox(label="Enter your style", default="medieval painting")
69
+ ],
70
+ outputs="image",
71
+ title="Stable Diffusion XL with Style Alignment",
72
+ description="Generate images in the style of your choice."
73
+ )
74
+
75
+ iface.launch()