Spaces:
Running
Running
import gradio as gr | |
import requests | |
import os | |
# Define the API parameters | |
API_URL = "https://api-inference.huggingface.co/models/vectara/hallucination_evaluation_model" | |
API_TOKEN = os.getenv("HF_AUTH_TOKEN") | |
if not API_TOKEN: | |
raise ValueError("Please set the HF_AUTH_TOKEN environment variable.") | |
headers = {"Authorization": f"Bearer {API_TOKEN}"} | |
# Function to query the API | |
def query(payload): | |
response = requests.post(API_URL, headers=headers, json=payload) | |
return response.json() | |
# Function to be called by the Gradio interface | |
def evaluate_hallucination(input1, input2): | |
# Combine the inputs | |
combined_input = f"{input1}. {input2}" | |
# Make the API call | |
output = query({"inputs": combined_input}) | |
# Extract the score from the output | |
score = output[0][0]['score'] | |
# Return a red or green circle based on the score | |
if score < 0.5: | |
return "π΄", "The score is less than 0.5" | |
else: | |
return "π’", "The score is greater than 0.5" | |
# Create the Gradio interface | |
iface = gr.Interface( | |
fn=evaluate_hallucination, | |
inputs=[gr.Textbox(label="Assertion"), gr.inputs.Textbox(label="Citation")], | |
outputs=[gr.Label(), gr.outputs.Textbox(label="Explanation")], | |
live=False | |
) | |
# Launch the interface | |
iface.launch() |