Spaces:
Paused
Paused
File size: 6,538 Bytes
54d10de 4c1c145 3796c5b 33d9042 e8d0c6b 33d9042 9488c79 33d9042 e8d0c6b 33d9042 da61538 33d9042 c4d7f81 85d5a02 c4d7f81 33d9042 c4d7f81 67dbfa2 c4b4e50 33d9042 d29782d c4d7f81 54d10de c4d7f81 bc5ae86 c2b9474 c4d7f81 67dbfa2 c4d7f81 67dbfa2 c4d7f81 50e659a aa10543 67dbfa2 50e659a 67dbfa2 50e659a 67dbfa2 50e659a 084c0d1 c4d7f81 67dbfa2 54d10de c4d7f81 a71b09f 9d5b6f7 c4d7f81 68c37fe 67dbfa2 c4d7f81 9d8f293 556511e 9d8f293 c4d7f81 33d9042 c4d7f81 d29782d c4d7f81 33d9042 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 |
# import spaces
import tempfile
import wave
import gradio as gr
import os
import re
import torch
import soundfile as sf
import numpy as np
import torch.nn.functional as F
from whisperspeech.pipeline import Pipeline
from whisperspeech.languages import LANGUAGES
from whisperspeech.pipeline import Pipeline
from whisperspeech.utils import resampler
title = """# 🙋🏻♂️ Welcome to🌟Collabora🌬️💬📝WhisperSpeech
You can use this ZeroGPU Space to test out the current model [🌬️💬📝collabora/whisperspeech](https://huggingface.co/collabora/whisperspeech). 🌬️💬📝collabora/whisperspeech is An Open Source text-to-speech system built by inverting Whisper. Install it and use your command line interface locally with `pip install whisperspeech`. It's like Stable Diffusion but for speech – both powerful and easily customizable : so you can use it programmatically in your own pipelines! [Contribute to whisperspeech here](https://github.com/collabora/WhisperSpeech)
You can also use 🌬️💬📝WhisperSpeech by cloning this space. 🧬🔬🔍 Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/Tonic/laion-whisper?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3>
We're **celebrating the release of the whisperspeech** at [the LAION community, if you love open source ai learn more here : https://laion.ai/](https://laion.ai/) big thanks to the folks at huggingface for the community grant 🤗
### How to Use
Input text with tahe language identifiers provided to create a multilingual speech. Optionally you can add an audiosample to make a voice print.Scroll down and try the api <3 Gradio.
This space runs on ZeroGPU, so **you need to be patient** while you acquire the GPU and load the model the first time you make a request !
"""
# text examples=["<en> Hello, how are you? <fr> Bonjour, comment ça va?", "<de> Guten Tag <it> Buongiorno <jp> こんにちは"]
# audio examples=["path/to/tonic.wav"]
# Function to parse the multilingual input text
def parse_multilingual_text(input_text):
pattern = r"<(\w+)>\s(.*?)\s(?=<\w+>|$)"
segments = re.findall(pattern, input_text)
return [(lang, text.strip()) for lang, text in segments if lang in LANGUAGES.keys()]
#@spaces.GPU
def generate_segment_audio(text, lang, speaker_url, pipe):
if not isinstance(text, str):
text = text.decode("utf-8") if isinstance(text, bytes) else str(text)
# Generating stoks (tokens<pl>) from text
# stoks = pipe.t2s.generate([text], lang=[lang])
audio_data = pipe.generate(text, speaker_url, lang)
resample_audio = resampler(newsr=24000)
audio_data_resampled = next(resample_audio([{'sample_rate': 24000, 'samples': audio_data.cpu()}]))['samples_24k']
audio_np = audio_data_resampled.cpu().numpy()
print("Shape after resampling:", audio_np.shape) # Debug statement
return audio_np
# Function to append and concatenate audio segments with padding
def concatenate_audio_segments(segments):
# # Determine the length of the longest segment
# max_length = max(seg.shape[0] for seg in segments)
# print("Max length of segments:", max_length) # Debug statement
# # Pad each segment to the length of the longest segment and stack them
# padded_segments = []
# for seg in segments:
# # Check if the segment is stereo; if not, convert it to stereo
# if seg.ndim == 1 or seg.shape[1] == 1:
# stereo_segment = np.stack((seg, seg), axis=-1)
# else:
# stereo_segment = seg
# Pad the segment to the max length
# padding_length = max_length - stereo_segment.shape[0]
# padded_segment = np.pad(stereo_segment, ((0, padding_length), (0, 0)), 'constant')
# print("Padded segment shape:", padded_segment.shape) # Debug statement
# padded_segments.append(padded_segment)
concatenated_audio = np.concatenate(segments , axis=1)
print("Concatenated audio shape:", concatenated_audio.shape) # Debug statement
# concatenated_audio = concatenated_audio / np.max(np.abs(concatenated_audio))
return concatenated_audio
# The rest of the code in app.py remains the same
# @spaces.GPU
def whisper_speech_demo(multilingual_text, speaker_audio):
segments = parse_multilingual_text(multilingual_text)
if not segments:
return None, "No valid language segments found. Please use the format: <lang> text"
pipe = Pipeline()
speaker_url = speaker_audio if speaker_audio is not None else None
audio_segments = []
for lang, text in segments:
text_str = text if isinstance(text, str) else str(text)
audio_np = generate_segment_audio(text_str, lang, speaker_url, pipe)
print("Audio segment shape:", audio_np.shape) # Debug statement
audio_segments.append(audio_np)
# Normalize the concatenated audio
concatenated_audio = concatenated_audio / np.max(np.abs(concatenated_audio))
# Write the audio data to a temporary file and return the file path
with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as tmp_file:
sf.write(tmp_file.name, concatenated_audio.T, 24000, format='WAV', subtype='PCM_16')
return tmp_file.name
with gr.Blocks() as demo:
gr.Markdown(title)
output_audio = gr.Audio(label="Generated Speech")
generate_button = gr.Button("Try 🌟Collabora🌬️💬📝WhisperSpeech")
with gr.Row():
text_input = gr.Textbox(label="Enter multilingual text", placeholder="e.g., <en> Hello <fr> Bonjour <es> Hola")
speaker_input = gr.Audio(label="Upload or Record Speaker Audio (optional)", sources=["upload", "microphone"])
with gr.Accordion("Available Languages and Their Tags"):
language_list = "\n".join([f"{lang}: {LANGUAGES[lang]}" for lang in LANGUAGES])
gr.Markdown(language_list)
generate_button.click(whisper_speech_demo, inputs=[text_input, speaker_input], outputs=output_audio)
demo.launch() |