File size: 6,538 Bytes
54d10de
4c1c145
3796c5b
33d9042
 
e8d0c6b
33d9042
9488c79
 
33d9042
e8d0c6b
33d9042
 
da61538
33d9042
c4d7f81
85d5a02
c4d7f81
33d9042
c4d7f81
 
 
 
67dbfa2
c4b4e50
33d9042
 
d29782d
 
 
c4d7f81
 
 
 
 
 
54d10de
c4d7f81
bc5ae86
 
c2b9474
 
 
 
c4d7f81
 
 
67dbfa2
c4d7f81
 
67dbfa2
c4d7f81
50e659a
 
 
 
 
 
 
 
 
 
 
aa10543
67dbfa2
50e659a
 
 
 
67dbfa2
50e659a
67dbfa2
 
50e659a
084c0d1
c4d7f81
67dbfa2
 
54d10de
c4d7f81
 
 
 
a71b09f
9d5b6f7
c4d7f81
 
68c37fe
 
67dbfa2
c4d7f81
9d8f293
556511e
9d8f293
 
 
 
 
c4d7f81
33d9042
 
c4d7f81
 
 
d29782d
 
c4d7f81
 
 
 
33d9042
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
# import spaces
import tempfile
import wave
import gradio as gr
import os
import re 
import torch
import soundfile as sf
import numpy as np
import torch.nn.functional as F
from whisperspeech.pipeline import Pipeline
from whisperspeech.languages import LANGUAGES
from whisperspeech.pipeline import Pipeline
from whisperspeech.utils import resampler

title = """# 🙋🏻‍♂️ Welcome to🌟Collabora🌬️💬📝WhisperSpeech

You can use this ZeroGPU Space to test out the current model [🌬️💬📝collabora/whisperspeech](https://huggingface.co/collabora/whisperspeech). 🌬️💬📝collabora/whisperspeech is An Open Source text-to-speech system built by inverting Whisper. Install it and use your command line interface locally with `pip install whisperspeech`. It's like Stable Diffusion but for speech – both powerful and easily customizable : so you can use it programmatically in your own pipelines! [Contribute to whisperspeech here](https://github.com/collabora/WhisperSpeech) 
You can also use 🌬️💬📝WhisperSpeech by cloning this space. 🧬🔬🔍 Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/Tonic/laion-whisper?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3> 

We're **celebrating the release of the whisperspeech** at [the LAION community, if you love open source ai learn more here : https://laion.ai/](https://laion.ai/) big thanks to the folks at huggingface for the community grant 🤗

### How to Use
Input text with tahe language identifiers provided to create a multilingual speech. Optionally you can add an audiosample to make a voice print.Scroll down and try the api <3 Gradio.
This space runs on ZeroGPU, so **you need to be patient** while you acquire the GPU and load the model the first time you make a request !
"""

# text examples=["<en> Hello, how are you? <fr> Bonjour, comment ça va?", "<de> Guten Tag <it> Buongiorno <jp> こんにちは"]
# audio examples=["path/to/tonic.wav"]

# Function to parse the multilingual input text
def parse_multilingual_text(input_text):
    pattern = r"<(\w+)>\s(.*?)\s(?=<\w+>|$)"
    segments = re.findall(pattern, input_text)
    return [(lang, text.strip()) for lang, text in segments if lang in LANGUAGES.keys()]

#@spaces.GPU
def generate_segment_audio(text, lang, speaker_url, pipe):
    if not isinstance(text, str):
        text = text.decode("utf-8") if isinstance(text, bytes) else str(text)

    # Generating stoks (tokens<pl>) from text
    # stoks = pipe.t2s.generate([text], lang=[lang])
    audio_data = pipe.generate(text, speaker_url, lang)
    resample_audio = resampler(newsr=24000)
    audio_data_resampled = next(resample_audio([{'sample_rate': 24000, 'samples': audio_data.cpu()}]))['samples_24k']
    audio_np = audio_data_resampled.cpu().numpy()
    print("Shape after resampling:", audio_np.shape)  # Debug statement
    return audio_np

# Function to append and concatenate audio segments with padding
def concatenate_audio_segments(segments):
#   # Determine the length of the longest segment
#   max_length = max(seg.shape[0] for seg in segments)
#   print("Max length of segments:", max_length)  # Debug statement
#   # Pad each segment to the length of the longest segment and stack them
#   padded_segments = []
#   for seg in segments:
#       # Check if the segment is stereo; if not, convert it to stereo
#       if seg.ndim == 1 or seg.shape[1] == 1:
#           stereo_segment = np.stack((seg, seg), axis=-1)
#       else:
#           stereo_segment = seg

        # Pad the segment to the max length
 #      padding_length = max_length - stereo_segment.shape[0]
 #      padded_segment = np.pad(stereo_segment, ((0, padding_length), (0, 0)), 'constant')
 #      print("Padded segment shape:", padded_segment.shape)  # Debug statement
 #      padded_segments.append(padded_segment)

    concatenated_audio = np.concatenate(segments , axis=1)
    
    print("Concatenated audio shape:", concatenated_audio.shape)  # Debug statement
    # concatenated_audio = concatenated_audio / np.max(np.abs(concatenated_audio))
    return concatenated_audio

# The rest of the code in app.py remains the same

# @spaces.GPU
def whisper_speech_demo(multilingual_text, speaker_audio):
    segments = parse_multilingual_text(multilingual_text)
    if not segments:
        return None, "No valid language segments found. Please use the format: <lang> text"
    pipe = Pipeline()
    speaker_url = speaker_audio if speaker_audio is not None else None
    audio_segments = []
    for lang, text in segments:
        text_str = text if isinstance(text, str) else str(text)
        audio_np = generate_segment_audio(text_str, lang, speaker_url, pipe)
        print("Audio segment shape:", audio_np.shape)  # Debug statement
        audio_segments.append(audio_np)
    # Normalize the concatenated audio
    concatenated_audio = concatenated_audio / np.max(np.abs(concatenated_audio))

    # Write the audio data to a temporary file and return the file path
    with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as tmp_file:
        sf.write(tmp_file.name, concatenated_audio.T, 24000, format='WAV', subtype='PCM_16')
        return tmp_file.name

with gr.Blocks() as demo:
    gr.Markdown(title)
    output_audio = gr.Audio(label="Generated Speech")
    generate_button = gr.Button("Try 🌟Collabora🌬️💬📝WhisperSpeech")
    with gr.Row():
        text_input = gr.Textbox(label="Enter multilingual text", placeholder="e.g., <en> Hello <fr> Bonjour <es> Hola")
        speaker_input = gr.Audio(label="Upload or Record Speaker Audio (optional)", sources=["upload", "microphone"])
        with gr.Accordion("Available Languages and Their Tags"):
            language_list = "\n".join([f"{lang}: {LANGUAGES[lang]}" for lang in LANGUAGES])
            gr.Markdown(language_list)    
    generate_button.click(whisper_speech_demo, inputs=[text_input, speaker_input], outputs=output_audio)

demo.launch()