Spaces:
Paused
Paused
import spaces | |
import tempfile | |
import wave | |
import gradio as gr | |
import os | |
import re | |
import torch | |
import soundfile as sf | |
import numpy as np | |
import torch.nn.functional as F | |
from whisperspeech.pipeline import Pipeline | |
from whisperspeech.languages import LANGUAGES | |
from whisperspeech.pipeline import Pipeline | |
from whisperspeech.utils import resampler | |
title = """# 🙋🏻♂️ Welcome to🌟Collabora🌬️💬📝WhisperSpeech | |
You can use this ZeroGPU Space to test out the current model [🌬️💬📝collabora/whisperspeech](https://huggingface.co/collabora/whisperspeech). 🌬️💬📝collabora/whisperspeech is An Open Source text-to-speech system built by inverting Whisper. Install it and use your command line interface locally with `pip install whisperspeech`. It's like Stable Diffusion but for speech – both powerful and easily customizable : so you can use it programmatically in your own pipelines! [Contribute to whisperspeech here](https://github.com/collabora/WhisperSpeech) | |
You can also use 🌬️💬📝WhisperSpeech by cloning this space. 🧬🔬🔍 Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/Tonic/laion-whisper?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3> | |
We're **celebrating the release of the whisperspeech** at [the LAION community, if you love open source ai learn more here : https://laion.ai/](https://laion.ai/) big thanks to the folks at huggingface for the community grant 🤗 | |
### How to Use | |
Input text with the language identifiers provided to create a multilingual speech. Optionally you can add an audiosample to make a voice print.Scroll down and try the api <3 Gradio. | |
This space runs on ZeroGPU, so **you need to be patient** while you acquire the GPU and load the model the first time you make a request ! | |
""" | |
# text examples=["<en> Hello, how are you? <fr> Bonjour, comment ça va?", "<de> Guten Tag <it> Buongiorno <jp> こんにちは"] | |
# audio examples=["path/to/tonic.wav"] | |
# Function to parse the multilingual input text | |
def parse_multilingual_text(input_text): | |
pattern = r"<(\w+)>\s(.*?)\s(?=<\w+>|$)" | |
segments = re.findall(pattern, input_text) | |
return [(lang, text.strip()) for lang, text in segments if lang in LANGUAGES.keys()] | |
def generate_segment_audio(text, lang, speaker_url, pipe): | |
if not isinstance(text, str): | |
text = text.decode("utf-8") if isinstance(text, bytes) else str(text) | |
# Generating stoks (tokens<pl>) from text | |
# stoks = pipe.t2s.generate([text], lang=[lang]) | |
audio_data = pipe.generate(text, speaker_url, lang) | |
resample_audio = resampler(newsr=24000) | |
audio_data_resampled = next(resample_audio([{'sample_rate': 24000, 'samples': audio_data.cpu()}]))['samples_24k'] | |
audio_np = audio_data_resampled.cpu().numpy() | |
return audio_np | |
# this function pads each segment to the length of the longest segment which is not optimal | |
def concatenate_audio_segments(segments): | |
mono_segments = [seg[:, 0] if seg.ndim > 1 else seg for seg in segments] | |
max_len = max(seg.shape[0] for seg in mono_segments) | |
padded_segments = [np.pad(seg, (0, max_len - seg.shape[0]), 'constant') for seg in mono_segments] | |
concatenated_audio = np.concatenate(padded_segments, axis=0) | |
concatenated_audio = concatenated_audio / np.max(np.abs(concatenated_audio)) | |
return np.asarray(concatenated_audio, dtype=np.float32) | |
def whisper_speech_demo(multilingual_text, speaker_audio): | |
segments = parse_multilingual_text(multilingual_text) | |
if not segments: | |
return None, "No valid language segments found. Please use the format: <lang> text" | |
pipe = Pipeline() | |
speaker_url = speaker_audio if speaker_audio is not None else None | |
audio_segments = [] | |
for lang, text in segments: | |
text_str = text if isinstance(text, str) else str(text) | |
audio_np = generate_segment_audio(text_str, lang, speaker_url, pipe) | |
audio_segments.append(audio_np) | |
concatenated_audio = concatenate_audio_segments(audio_segments) | |
audio_stereo = np.stack((concatenated_audio, concatenated_audio), axis=-1) | |
audio_stereo = audio_stereo.reshape(-1, 2) | |
with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as tmp_file: | |
sf.write(tmp_file.name, audio_stereo, 24000, format='WAV', subtype='PCM_16') | |
return tmp_file.name | |
with gr.Blocks() as demo: | |
gr.Markdown(title) | |
output_audio = gr.Audio(label="Generated Speech") | |
generate_button = gr.Button("Try 🌟Collabora🌬️💬📝WhisperSpeech") | |
with gr.Row(): | |
text_input = gr.Textbox(label="Enter multilingual text", placeholder="e.g., <en> Hello <fr> Bonjour <es> Hola") | |
speaker_input = gr.Audio(label="Upload or Record Speaker Audio (optional)", sources=["upload", "microphone"]) | |
with gr.Accordion("Available Languages and Their Tags"): | |
language_list = "\n".join([f"{lang}: {LANGUAGES[lang]}" for lang in LANGUAGES]) | |
gr.Markdown(language_list) | |
generate_button.click(whisper_speech_demo, inputs=[text_input, speaker_input], outputs=output_audio) | |
demo.launch() |