File size: 2,419 Bytes
9b74ec6 1ba0543 9b74ec6 1ba0543 9b74ec6 1ba0543 9b74ec6 1ba0543 ba5ed8e 1ba0543 9b74ec6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from sentence_transformers import SentenceTransformer, utils
from transformers import pipeline
# Initialize FastAPI app
app = FastAPI()
# Load models
model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
question_model = "deepset/tinyroberta-squad2"
nlp = pipeline('question-answering', model=question_model, tokenizer=question_model)
# Define request models
class ModifyQueryRequest(BaseModel):
query_string: str
class AnswerQuestionRequest(BaseModel):
question: str
context: dict
# Define response models (if needed)
class ModifyQueryResponse(BaseModel):
embeddings: list
class AnswerQuestionResponse(BaseModel):
answer: str
locations: list
# Define API endpoints
@app.post("/modify_query", response_model=ModifyQueryResponse)
async def modify_query(request: ModifyQueryRequest):
try:
binary_embeddings = model.encode([request.query_string], precision="binary")
return ModifyQueryResponse(embeddings=binary_embeddings[0].tolist())
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/answer_question", response_model=AnswerQuestionResponse)
async def answer_question(request: AnswerQuestionRequest):
try:
res_locs = []
context_string = ''
corpus_embeddings = model.encode(request.context['context'], convert_to_tensor=True)
query_embeddings = model.encode(request.question, convert_to_tensor=True)
hits = util.semantic_search(query_embeddings, corpus_embeddings)
for hit in hits:
if hit['score'] > .5:
loc = hit['corpus_id']
res_locs.append(request.context['locations'][loc])
context_string += request.context['context'][loc] + ' '
if len(res_locs) == 0:
ans = "Sorry, I couldn't find any results for your query."
else:
QA_input = {
'question': request.question,
'context': context_string.replace('\n',' ')
}
result = nlp(QA_input)
ans = result['answer']
return AnswerQuestionResponse(answer=ans, locations = res_locs)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)
|