|
from fastapi import FastAPI, HTTPException, Request |
|
from fastapi.responses import JSONResponse, RedirectResponse |
|
from pydantic import BaseModel |
|
from sentence_transformers import SentenceTransformer, util |
|
from transformers import pipeline |
|
from typing import List |
|
import numpy as np |
|
|
|
app = FastAPI() |
|
|
|
|
|
model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2") |
|
|
|
summarizer = pipeline("summarization", model="facebook/bart-large-cnn") |
|
|
|
|
|
|
|
@app.post("/modify_query") |
|
async def modify_query(request: Request): |
|
try: |
|
raw_data = await request.json() |
|
binary_embeddings = model.encode([raw_data['query_string']], precision="binary") |
|
return JSONResponse(content={'embeddings':binary_embeddings[0].tolist()}) |
|
except Exception as e: |
|
raise HTTPException(status_code=500, detail=str(e)) |
|
|
|
@app.post("/modify_query_v3") |
|
async def modify_query_v3(request: Request): |
|
try: |
|
|
|
raw_data = await request.json() |
|
embeddings = model.encode(raw_data['query_string_list']) |
|
return JSONResponse(content={'embeddings':[emb.tolist() for emb in embeddings]}) |
|
except Exception as e: |
|
raise HTTPException(status_code=500, detail=f"Error in modifying query v3: {str(e)}") |
|
|
|
|
|
@app.post("/makeanswer") |
|
async def makeAnswer(request: Request): |
|
try: |
|
|
|
raw_data = await request.json() |
|
response = summarizer(raw_data['context'], max_length=130, min_length=30, do_sample=False) |
|
return JSONResponse(content={'answer':response[0]["summary_text"]}) |
|
except Exception as e: |
|
raise HTTPException(status_code=500, detail=f"Error in T5 summarization: {str(e)}") |
|
|
|
if __name__ == "__main__": |
|
import uvicorn |
|
uvicorn.run(app, host="0.0.0.0", port=8000) |
|
|
|
|
|
|