Update app.py
Browse files
app.py
CHANGED
@@ -1,23 +1,15 @@
|
|
1 |
-
import logging
|
2 |
from fastapi import FastAPI, HTTPException
|
3 |
from pydantic import BaseModel
|
4 |
from sentence_transformers import SentenceTransformer, util
|
5 |
from transformers import pipeline
|
6 |
|
7 |
-
# Set up logging
|
8 |
-
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
9 |
-
logger = logging.getLogger(__name__)
|
10 |
-
|
11 |
# Initialize FastAPI app
|
12 |
app = FastAPI()
|
13 |
|
14 |
-
# Log model loading
|
15 |
-
logger.info("Loading models...")
|
16 |
# Load models
|
17 |
model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
18 |
question_model = "deepset/tinyroberta-squad2"
|
19 |
nlp = pipeline('question-answering', model=question_model, tokenizer=question_model)
|
20 |
-
logger.info("Models loaded successfully.")
|
21 |
|
22 |
# Define request models
|
23 |
class ModifyQueryRequest(BaseModel):
|
@@ -25,9 +17,10 @@ class ModifyQueryRequest(BaseModel):
|
|
25 |
|
26 |
class AnswerQuestionRequest(BaseModel):
|
27 |
question: str
|
28 |
-
context:
|
|
|
29 |
|
30 |
-
# Define response models
|
31 |
class ModifyQueryResponse(BaseModel):
|
32 |
embeddings: list
|
33 |
|
@@ -38,50 +31,38 @@ class AnswerQuestionResponse(BaseModel):
|
|
38 |
# Define API endpoints
|
39 |
@app.post("/modify_query", response_model=ModifyQueryResponse)
|
40 |
async def modify_query(request: ModifyQueryRequest):
|
41 |
-
logger.info(f"Received /modify_query request: {request.query_string}")
|
42 |
try:
|
43 |
binary_embeddings = model.encode([request.query_string], precision="binary")
|
44 |
-
logger.info("Embeddings generated successfully.")
|
45 |
return ModifyQueryResponse(embeddings=binary_embeddings[0].tolist())
|
46 |
except Exception as e:
|
47 |
-
logger.error(f"Error generating embeddings: {str(e)}")
|
48 |
raise HTTPException(status_code=500, detail=str(e))
|
49 |
|
50 |
@app.post("/answer_question", response_model=AnswerQuestionResponse)
|
51 |
async def answer_question(request: AnswerQuestionRequest):
|
52 |
-
logger.info(f"Received /answer_question request: {request.question}")
|
53 |
try:
|
54 |
res_locs = []
|
55 |
context_string = ''
|
56 |
-
|
57 |
-
corpus_embeddings = model.encode(request.context['context'], convert_to_tensor=True)
|
58 |
query_embeddings = model.encode(request.question, convert_to_tensor=True)
|
59 |
hits = util.semantic_search(query_embeddings, corpus_embeddings)
|
60 |
-
|
61 |
for hit in hits:
|
62 |
-
if hit['score'] >
|
63 |
loc = hit['corpus_id']
|
64 |
-
res_locs.append(request.
|
65 |
-
context_string += request.context[
|
66 |
-
|
67 |
if len(res_locs) == 0:
|
68 |
ans = "Sorry, I couldn't find any results for your query."
|
69 |
-
logger.info("No relevant context found.")
|
70 |
else:
|
71 |
QA_input = {
|
72 |
'question': request.question,
|
73 |
-
'context': context_string.replace('\n',
|
74 |
}
|
75 |
result = nlp(QA_input)
|
76 |
ans = result['answer']
|
77 |
-
|
78 |
-
|
79 |
-
return AnswerQuestionResponse(answer=ans, locations=res_locs)
|
80 |
except Exception as e:
|
81 |
-
logger.error(f"Error answering question: {str(e)}")
|
82 |
raise HTTPException(status_code=500, detail=str(e))
|
83 |
|
84 |
if __name__ == "__main__":
|
85 |
import uvicorn
|
86 |
-
logger.info("Starting FastAPI server...")
|
87 |
uvicorn.run(app, host="0.0.0.0", port=8000)
|
|
|
|
|
1 |
from fastapi import FastAPI, HTTPException
|
2 |
from pydantic import BaseModel
|
3 |
from sentence_transformers import SentenceTransformer, util
|
4 |
from transformers import pipeline
|
5 |
|
|
|
|
|
|
|
|
|
6 |
# Initialize FastAPI app
|
7 |
app = FastAPI()
|
8 |
|
|
|
|
|
9 |
# Load models
|
10 |
model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
11 |
question_model = "deepset/tinyroberta-squad2"
|
12 |
nlp = pipeline('question-answering', model=question_model, tokenizer=question_model)
|
|
|
13 |
|
14 |
# Define request models
|
15 |
class ModifyQueryRequest(BaseModel):
|
|
|
17 |
|
18 |
class AnswerQuestionRequest(BaseModel):
|
19 |
question: str
|
20 |
+
context: list
|
21 |
+
locations: list
|
22 |
|
23 |
+
# Define response models (if needed)
|
24 |
class ModifyQueryResponse(BaseModel):
|
25 |
embeddings: list
|
26 |
|
|
|
31 |
# Define API endpoints
|
32 |
@app.post("/modify_query", response_model=ModifyQueryResponse)
|
33 |
async def modify_query(request: ModifyQueryRequest):
|
|
|
34 |
try:
|
35 |
binary_embeddings = model.encode([request.query_string], precision="binary")
|
|
|
36 |
return ModifyQueryResponse(embeddings=binary_embeddings[0].tolist())
|
37 |
except Exception as e:
|
|
|
38 |
raise HTTPException(status_code=500, detail=str(e))
|
39 |
|
40 |
@app.post("/answer_question", response_model=AnswerQuestionResponse)
|
41 |
async def answer_question(request: AnswerQuestionRequest):
|
|
|
42 |
try:
|
43 |
res_locs = []
|
44 |
context_string = ''
|
45 |
+
corpus_embeddings = model.encode(request.context, convert_to_tensor=True)
|
|
|
46 |
query_embeddings = model.encode(request.question, convert_to_tensor=True)
|
47 |
hits = util.semantic_search(query_embeddings, corpus_embeddings)
|
|
|
48 |
for hit in hits:
|
49 |
+
if hit['score'] > .5:
|
50 |
loc = hit['corpus_id']
|
51 |
+
res_locs.append(request.locations[loc])
|
52 |
+
context_string += request.context[loc] + ' '
|
|
|
53 |
if len(res_locs) == 0:
|
54 |
ans = "Sorry, I couldn't find any results for your query."
|
|
|
55 |
else:
|
56 |
QA_input = {
|
57 |
'question': request.question,
|
58 |
+
'context': context_string.replace('\n',' ')
|
59 |
}
|
60 |
result = nlp(QA_input)
|
61 |
ans = result['answer']
|
62 |
+
return AnswerQuestionResponse(answer=ans, locations = res_locs)
|
|
|
|
|
63 |
except Exception as e:
|
|
|
64 |
raise HTTPException(status_code=500, detail=str(e))
|
65 |
|
66 |
if __name__ == "__main__":
|
67 |
import uvicorn
|
|
|
68 |
uvicorn.run(app, host="0.0.0.0", port=8000)
|