Tonyivan commited on
Commit
7c6c308
·
verified ·
1 Parent(s): 409504b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +44 -36
app.py CHANGED
@@ -2,53 +2,62 @@ from fastapi import FastAPI, HTTPException
2
  from pydantic import BaseModel
3
  from sentence_transformers import SentenceTransformer, util
4
  from transformers import pipeline
5
- import numpy as np
6
  from typing import List
7
-
8
 
9
  app = FastAPI()
10
 
 
11
  model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
12
  question_model = "deepset/tinyroberta-squad2"
13
  nlp = pipeline('question-answering', model=question_model, tokenizer=question_model)
14
 
15
  summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
16
 
17
- # Define request models
18
  class ModifyQueryRequest(BaseModel):
19
  query_string: str
20
 
21
- # Define request models
22
  class ModifyQueryRequest_v3(BaseModel):
23
- query_string_list: [str]
24
 
25
  class AnswerQuestionRequest(BaseModel):
26
  question: str
27
- context: list
28
- locations: list
29
 
30
  class T5QuestionRequest(BaseModel):
31
  context: str
32
 
33
- class T5Response(BaseModel):
34
- answer: str
35
-
36
- # Define response models (if needed)
37
  class ModifyQueryResponse(BaseModel):
38
- embeddings: list
39
 
40
  class AnswerQuestionResponse(BaseModel):
41
  answer: str
42
- locations: list
43
 
44
- # Define API endpoints
 
 
 
45
  @app.post("/modify_query", response_model=ModifyQueryResponse)
46
  async def modify_query(request: ModifyQueryRequest):
47
  try:
48
- binary_embeddings = model.encode([request.query_string], precision="binary")
49
- return ModifyQueryResponse(embeddings=binary_embeddings[0].tolist())
 
 
 
 
 
 
 
 
 
 
50
  except Exception as e:
51
- raise HTTPException(status_code=500, detail=str(e))
52
 
53
  @app.post("/answer_question", response_model=AnswerQuestionResponse)
54
  async def answer_question(request: AnswerQuestionRequest):
@@ -58,42 +67,41 @@ async def answer_question(request: AnswerQuestionRequest):
58
  corpus_embeddings = model.encode(request.context, convert_to_tensor=True)
59
  query_embeddings = model.encode(request.question, convert_to_tensor=True)
60
  hits = util.semantic_search(query_embeddings, corpus_embeddings)
 
 
61
  for hit in hits[0]:
62
- if hit['score'] > .4:
63
  loc = hit['corpus_id']
64
  res_locs.append(request.locations[loc])
65
  context_string += request.context[loc] + ' '
66
- if len(res_locs) == 0:
67
- ans = "Sorry, I couldn't find any results for your query. Please try again!"
 
 
68
  else:
 
69
  QA_input = {
70
  'question': request.question,
71
- 'context': context_string.replace('\n',' ')
72
  }
73
  result = nlp(QA_input)
74
- ans = result['answer']
75
- return AnswerQuestionResponse(answer=ans, locations = res_locs)
 
76
  except Exception as e:
77
- raise HTTPException(status_code=500, detail=str(e))
78
 
79
  @app.post("/t5answer", response_model=T5Response)
80
  async def t5answer(request: T5QuestionRequest):
81
- resp = summarizer(request.context, max_length=130, min_length=30, do_sample=False)
82
- return T5Response(answer = resp[0]["summary_text"])
83
-
84
-
85
- # Define API endpoints
86
- @app.post("/modify_query_v3", response_model=ModifyQueryResponse)
87
- async def modify_query2(request: ModifyQueryRequest_v3):
88
  try:
89
- embeddings = model.encode(request.query_string_list)
90
- return ModifyQueryResponse(embeddings=[emb.tolist() for emb in embeddings])
 
91
  except Exception as e:
92
- raise HTTPException(status_code=500, detail=str(e))
93
-
94
-
95
 
96
  if __name__ == "__main__":
97
  import uvicorn
98
  uvicorn.run(app, host="0.0.0.0", port=8000)
99
 
 
 
2
  from pydantic import BaseModel
3
  from sentence_transformers import SentenceTransformer, util
4
  from transformers import pipeline
 
5
  from typing import List
6
+ import numpy as np
7
 
8
  app = FastAPI()
9
 
10
+ # Load models
11
  model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
12
  question_model = "deepset/tinyroberta-squad2"
13
  nlp = pipeline('question-answering', model=question_model, tokenizer=question_model)
14
 
15
  summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
16
 
17
+ # Request models
18
  class ModifyQueryRequest(BaseModel):
19
  query_string: str
20
 
 
21
  class ModifyQueryRequest_v3(BaseModel):
22
+ query_string_list: List[str]
23
 
24
  class AnswerQuestionRequest(BaseModel):
25
  question: str
26
+ context: List[str]
27
+ locations: List[str]
28
 
29
  class T5QuestionRequest(BaseModel):
30
  context: str
31
 
32
+ # Response models
 
 
 
33
  class ModifyQueryResponse(BaseModel):
34
+ embeddings: List[List[float]]
35
 
36
  class AnswerQuestionResponse(BaseModel):
37
  answer: str
38
+ locations: List[str]
39
 
40
+ class T5Response(BaseModel):
41
+ answer: str
42
+
43
+ # API endpoints
44
  @app.post("/modify_query", response_model=ModifyQueryResponse)
45
  async def modify_query(request: ModifyQueryRequest):
46
  try:
47
+ # Generate embeddings
48
+ embeddings = model.encode([request.query_string])
49
+ return ModifyQueryResponse(embeddings=[emb.tolist() for emb in embeddings])
50
+ except Exception as e:
51
+ raise HTTPException(status_code=500, detail=f"Error in modifying query: {str(e)}")
52
+
53
+ @app.post("/modify_query_v3", response_model=ModifyQueryResponse)
54
+ async def modify_query_v3(request: ModifyQueryRequest_v3):
55
+ try:
56
+ # Generate embeddings for a list of query strings
57
+ embeddings = model.encode(request.query_string_list)
58
+ return ModifyQueryResponse(embeddings=[emb.tolist() for emb in embeddings])
59
  except Exception as e:
60
+ raise HTTPException(status_code=500, detail=f"Error in modifying query v3: {str(e)}")
61
 
62
  @app.post("/answer_question", response_model=AnswerQuestionResponse)
63
  async def answer_question(request: AnswerQuestionRequest):
 
67
  corpus_embeddings = model.encode(request.context, convert_to_tensor=True)
68
  query_embeddings = model.encode(request.question, convert_to_tensor=True)
69
  hits = util.semantic_search(query_embeddings, corpus_embeddings)
70
+
71
+ # Collect relevant contexts
72
  for hit in hits[0]:
73
+ if hit['score'] > 0.4:
74
  loc = hit['corpus_id']
75
  res_locs.append(request.locations[loc])
76
  context_string += request.context[loc] + ' '
77
+
78
+ # If no relevant contexts are found
79
+ if not res_locs:
80
+ answer = "Sorry, I couldn't find any results for your query. Please try again!"
81
  else:
82
+ # Use the question-answering pipeline
83
  QA_input = {
84
  'question': request.question,
85
+ 'context': context_string.replace('\n', ' ')
86
  }
87
  result = nlp(QA_input)
88
+ answer = result['answer']
89
+
90
+ return AnswerQuestionResponse(answer=answer, locations=res_locs)
91
  except Exception as e:
92
+ raise HTTPException(status_code=500, detail=f"Error in answering question: {str(e)}")
93
 
94
  @app.post("/t5answer", response_model=T5Response)
95
  async def t5answer(request: T5QuestionRequest):
 
 
 
 
 
 
 
96
  try:
97
+ # Summarize the context
98
+ response = summarizer(request.context, max_length=130, min_length=30, do_sample=False)
99
+ return T5Response(answer=response[0]["summary_text"])
100
  except Exception as e:
101
+ raise HTTPException(status_code=500, detail=f"Error in T5 summarization: {str(e)}")
 
 
102
 
103
  if __name__ == "__main__":
104
  import uvicorn
105
  uvicorn.run(app, host="0.0.0.0", port=8000)
106
 
107
+