Update app.py
Browse files
app.py
CHANGED
@@ -2,7 +2,7 @@ from fastapi import FastAPI, HTTPException
|
|
2 |
from pydantic import BaseModel
|
3 |
from sentence_transformers import SentenceTransformer, util
|
4 |
from transformers import pipeline
|
5 |
-
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
6 |
|
7 |
|
8 |
# Initialize FastAPI app
|
@@ -13,8 +13,9 @@ model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
|
13 |
question_model = "deepset/tinyroberta-squad2"
|
14 |
nlp = pipeline('question-answering', model=question_model, tokenizer=question_model)
|
15 |
|
16 |
-
t5tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-large")
|
17 |
-
t5model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-large")
|
|
|
18 |
|
19 |
# Define request models
|
20 |
class ModifyQueryRequest(BaseModel):
|
@@ -26,7 +27,6 @@ class AnswerQuestionRequest(BaseModel):
|
|
26 |
locations: list
|
27 |
|
28 |
class T5QuestionRequest(BaseModel):
|
29 |
-
question: str
|
30 |
context: str
|
31 |
|
32 |
class T5Response(BaseModel):
|
@@ -77,11 +77,8 @@ async def answer_question(request: AnswerQuestionRequest):
|
|
77 |
|
78 |
@app.post("/t5answer", response_model=T5Response)
|
79 |
async def t5answer(request: T5QuestionRequest):
|
80 |
-
|
81 |
-
|
82 |
-
outputs = t5model.generate(input_ids)
|
83 |
-
resp = t5tokenizer.decode(outputs[0], skip_special_tokens=True)
|
84 |
-
return T5Response(answer = resp)
|
85 |
|
86 |
if __name__ == "__main__":
|
87 |
import uvicorn
|
|
|
2 |
from pydantic import BaseModel
|
3 |
from sentence_transformers import SentenceTransformer, util
|
4 |
from transformers import pipeline
|
5 |
+
#from transformers import T5Tokenizer, T5ForConditionalGeneration
|
6 |
|
7 |
|
8 |
# Initialize FastAPI app
|
|
|
13 |
question_model = "deepset/tinyroberta-squad2"
|
14 |
nlp = pipeline('question-answering', model=question_model, tokenizer=question_model)
|
15 |
|
16 |
+
#t5tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-large")
|
17 |
+
#t5model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-large")
|
18 |
+
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
19 |
|
20 |
# Define request models
|
21 |
class ModifyQueryRequest(BaseModel):
|
|
|
27 |
locations: list
|
28 |
|
29 |
class T5QuestionRequest(BaseModel):
|
|
|
30 |
context: str
|
31 |
|
32 |
class T5Response(BaseModel):
|
|
|
77 |
|
78 |
@app.post("/t5answer", response_model=T5Response)
|
79 |
async def t5answer(request: T5QuestionRequest):
|
80 |
+
resp = summarizer(request.context, max_length=130, min_length=30, do_sample=False)
|
81 |
+
return T5Response(answer = resp[0]["summary_text"])
|
|
|
|
|
|
|
82 |
|
83 |
if __name__ == "__main__":
|
84 |
import uvicorn
|