from fastapi import FastAPI, HTTPException, Request from fastapi.responses import JSONResponse, RedirectResponse from pydantic import BaseModel from sentence_transformers import SentenceTransformer, util from transformers import pipeline from typing import List import numpy as np app = FastAPI() # Load models model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2") summarizer = pipeline("summarization", model="facebook/bart-large-cnn") # API endpoints @app.post("/modify_query") async def modify_query(request: Request): try: raw_data = await request.json() binary_embeddings = model.encode([raw_data['query_string']], precision="binary") return JSONResponse(content={'embeddings':binary_embeddings[0].tolist()}) except Exception as e: raise HTTPException(status_code=500, detail=str(e)) @app.post("/modify_query_v3") async def modify_query_v3(request: Request): try: # Generate embeddings for a list of query strings raw_data = await request.json() embeddings = model.encode(raw_data['query_string_list']) return JSONResponse(content={'embeddings':[emb.tolist() for emb in embeddings]}) except Exception as e: raise HTTPException(status_code=500, detail=f"Error in modifying query v3: {str(e)}") @app.post("/makeanswer") async def makeAnswer(request: Request): try: # Summarize the context raw_data = await request.json() response = summarizer(raw_data['context'], max_length=130, min_length=30, do_sample=False) return JSONResponse(content={'answer':response[0]["summary_text"]}) except Exception as e: raise HTTPException(status_code=500, detail=f"Error in T5 summarization: {str(e)}") if __name__ == "__main__": import uvicorn uvicorn.run(app, host="0.0.0.0", port=8000)