Spaces:
Runtime error
Runtime error
File size: 2,266 Bytes
453c0b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
import os
import torch
import torch.nn as nn
import timm
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
import gradio as gr
from PIL import Image
import torch.nn.functional as F
# 전역 설정
CFG = {
'IMG_SIZE': 224
}
class MultiLabelClassificationModel(nn.Module):
def __init__(self, num_labels):
super(MultiLabelClassificationModel, self).__init__()
# 이미지 특징 추출
self.cnn = timm.create_model("timm/convnext_base.clip_laion2b_augreg_ft_in12k_in1k", pretrained=True, drop_rate=0.05, drop_path_rate=0.05, in_chans=3)
# 멀티 라벨 분류 헤드
self.classification_head = nn.Linear(1000, num_labels)
def forward(self, images):
# CNN
features = self.cnn(images)
features_flat = features.view(features.size(0), -1)
# 멀티 라벨 분류
logits = self.classification_head(features_flat)
# probs = torch.sigmoid(logits)
return logits
test_transform = transforms.Compose([
transforms.Resize(size=(CFG['IMG_SIZE'], CFG['IMG_SIZE']), interpolation=InterpolationMode.BICUBIC),
transforms.ToTensor(),
transforms.Normalize(mean = [0.485, 0.456, 0.406], std = [0.229, 0.224, 0.225]),
])
model = MultiLabelClassificationModel(num_labels=13)
model.load_state_dict(torch.load(f'checkpoint.tar')['model_state_dict'])
model.eval() # 모델을 평가 모드로 설정
# 미리 설정한 라벨 목록
labels = ['Mold', 'blight', 'greening', 'healthy', 'measles',
'mildew', 'mite', 'rot', 'rust', 'scab', 'scorch', 'spot', 'virus']
def predict(image_path):
image = Image.open(image_path)
image = test_transform(image).unsqueeze(0)
with torch.no_grad():
logits = model(image)
probs = F.softmax(logits, dim=1) # softmax를 적용하여 확률 값으로 변환
result = {label: float(probs[0][i]) for i, label in enumerate(labels)}
return result
app = gr.Interface(
fn=predict,
inputs=gr.Image(type='filepath'),
outputs=gr.Label(),
title='Multi-Label Image Classification',
description='Automatically classify images into the following categories: ' + ', '.join(labels) + '.'
)
app.launch(share=True) |