Spaces:
Runtime error
Runtime error
Duplicate from Bingsu/color_textual_inversion
Browse filesCo-authored-by: Dowon Hwang <[email protected]>
- .gitignore +173 -0
- LICENSE.md +22 -0
- README.md +11 -0
- app.py +128 -0
- info.txt +7 -0
- pdm.lock +0 -0
- pyproject.toml +40 -0
- requirements.txt +9 -0
- textual_inversion.py +769 -0
.gitignore
ADDED
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Created by https://www.toptal.com/developers/gitignore/api/python
|
2 |
+
# Edit at https://www.toptal.com/developers/gitignore?templates=python
|
3 |
+
|
4 |
+
### Python ###
|
5 |
+
# Byte-compiled / optimized / DLL files
|
6 |
+
__pycache__/
|
7 |
+
*.py[cod]
|
8 |
+
*$py.class
|
9 |
+
|
10 |
+
# C extensions
|
11 |
+
*.so
|
12 |
+
|
13 |
+
# Distribution / packaging
|
14 |
+
.Python
|
15 |
+
build/
|
16 |
+
develop-eggs/
|
17 |
+
dist/
|
18 |
+
downloads/
|
19 |
+
eggs/
|
20 |
+
.eggs/
|
21 |
+
lib/
|
22 |
+
lib64/
|
23 |
+
parts/
|
24 |
+
sdist/
|
25 |
+
var/
|
26 |
+
wheels/
|
27 |
+
share/python-wheels/
|
28 |
+
*.egg-info/
|
29 |
+
.installed.cfg
|
30 |
+
*.egg
|
31 |
+
MANIFEST
|
32 |
+
|
33 |
+
# PyInstaller
|
34 |
+
# Usually these files are written by a python script from a template
|
35 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
36 |
+
*.manifest
|
37 |
+
*.spec
|
38 |
+
|
39 |
+
# Installer logs
|
40 |
+
pip-log.txt
|
41 |
+
pip-delete-this-directory.txt
|
42 |
+
|
43 |
+
# Unit test / coverage reports
|
44 |
+
htmlcov/
|
45 |
+
.tox/
|
46 |
+
.nox/
|
47 |
+
.coverage
|
48 |
+
.coverage.*
|
49 |
+
.cache
|
50 |
+
nosetests.xml
|
51 |
+
coverage.xml
|
52 |
+
*.cover
|
53 |
+
*.py,cover
|
54 |
+
.hypothesis/
|
55 |
+
.pytest_cache/
|
56 |
+
cover/
|
57 |
+
|
58 |
+
# Translations
|
59 |
+
*.mo
|
60 |
+
*.pot
|
61 |
+
|
62 |
+
# Django stuff:
|
63 |
+
*.log
|
64 |
+
local_settings.py
|
65 |
+
db.sqlite3
|
66 |
+
db.sqlite3-journal
|
67 |
+
|
68 |
+
# Flask stuff:
|
69 |
+
instance/
|
70 |
+
.webassets-cache
|
71 |
+
|
72 |
+
# Scrapy stuff:
|
73 |
+
.scrapy
|
74 |
+
|
75 |
+
# Sphinx documentation
|
76 |
+
docs/_build/
|
77 |
+
|
78 |
+
# PyBuilder
|
79 |
+
.pybuilder/
|
80 |
+
target/
|
81 |
+
|
82 |
+
# Jupyter Notebook
|
83 |
+
.ipynb_checkpoints
|
84 |
+
|
85 |
+
# IPython
|
86 |
+
profile_default/
|
87 |
+
ipython_config.py
|
88 |
+
|
89 |
+
# pyenv
|
90 |
+
# For a library or package, you might want to ignore these files since the code is
|
91 |
+
# intended to run in multiple environments; otherwise, check them in:
|
92 |
+
# .python-version
|
93 |
+
|
94 |
+
# pipenv
|
95 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
96 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
97 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
98 |
+
# install all needed dependencies.
|
99 |
+
#Pipfile.lock
|
100 |
+
|
101 |
+
# poetry
|
102 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
103 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
104 |
+
# commonly ignored for libraries.
|
105 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
106 |
+
#poetry.lock
|
107 |
+
|
108 |
+
# pdm
|
109 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
110 |
+
#pdm.lock
|
111 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
112 |
+
# in version control.
|
113 |
+
# https://pdm.fming.dev/#use-with-ide
|
114 |
+
.pdm.toml
|
115 |
+
|
116 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
117 |
+
__pypackages__/
|
118 |
+
|
119 |
+
# Celery stuff
|
120 |
+
celerybeat-schedule
|
121 |
+
celerybeat.pid
|
122 |
+
|
123 |
+
# SageMath parsed files
|
124 |
+
*.sage.py
|
125 |
+
|
126 |
+
# Environments
|
127 |
+
.env
|
128 |
+
.venv
|
129 |
+
env/
|
130 |
+
venv/
|
131 |
+
ENV/
|
132 |
+
env.bak/
|
133 |
+
venv.bak/
|
134 |
+
|
135 |
+
# Spyder project settings
|
136 |
+
.spyderproject
|
137 |
+
.spyproject
|
138 |
+
|
139 |
+
# Rope project settings
|
140 |
+
.ropeproject
|
141 |
+
|
142 |
+
# mkdocs documentation
|
143 |
+
/site
|
144 |
+
|
145 |
+
# mypy
|
146 |
+
.mypy_cache/
|
147 |
+
.dmypy.json
|
148 |
+
dmypy.json
|
149 |
+
|
150 |
+
# Pyre type checker
|
151 |
+
.pyre/
|
152 |
+
|
153 |
+
# pytype static type analyzer
|
154 |
+
.pytype/
|
155 |
+
|
156 |
+
# Cython debug symbols
|
157 |
+
cython_debug/
|
158 |
+
|
159 |
+
# PyCharm
|
160 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
161 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
162 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
163 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
164 |
+
#.idea/
|
165 |
+
|
166 |
+
### Python Patch ###
|
167 |
+
# Poetry local configuration file - https://python-poetry.org/docs/configuration/#local-configuration
|
168 |
+
poetry.toml
|
169 |
+
|
170 |
+
|
171 |
+
# End of https://www.toptal.com/developers/gitignore/api/python
|
172 |
+
dataset/
|
173 |
+
*.pt
|
LICENSE.md
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
The MIT License (MIT)
|
3 |
+
|
4 |
+
Copyright (c) 2022 Bingsu
|
5 |
+
|
6 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
7 |
+
of this software and associated documentation files (the "Software"), to deal
|
8 |
+
in the Software without restriction, including without limitation the rights
|
9 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
10 |
+
copies of the Software, and to permit persons to whom the Software is
|
11 |
+
furnished to do so, subject to the following conditions:
|
12 |
+
|
13 |
+
The above copyright notice and this permission notice shall be included in all
|
14 |
+
copies or substantial portions of the Software.
|
15 |
+
|
16 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
17 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
18 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
19 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
20 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
21 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
22 |
+
SOFTWARE.
|
README.md
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: color_textual_inversion
|
3 |
+
emoji: 🖌️
|
4 |
+
sdk: streamlit
|
5 |
+
python_version: 3.9
|
6 |
+
sdk_version: 1.10.0
|
7 |
+
app_file: app.py
|
8 |
+
duplicated_from: Bingsu/color_textual_inversion
|
9 |
+
---
|
10 |
+
|
11 |
+
# color_textual_inversion
|
app.py
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import shlex
|
4 |
+
import subprocess
|
5 |
+
from pathlib import Path
|
6 |
+
from tempfile import TemporaryDirectory
|
7 |
+
from textwrap import dedent
|
8 |
+
|
9 |
+
import numpy as np
|
10 |
+
import streamlit as st
|
11 |
+
import torch
|
12 |
+
from PIL import Image
|
13 |
+
from transformers import CLIPTokenizer
|
14 |
+
|
15 |
+
|
16 |
+
def hex_to_rgb(s: str) -> tuple[int, int, int]:
|
17 |
+
value = s.lstrip("#")
|
18 |
+
return (int(value[:2], 16), int(value[2:4], 16), int(value[4:6], 16))
|
19 |
+
|
20 |
+
|
21 |
+
st.header("Color Textual Inversion")
|
22 |
+
with st.expander(label="info"):
|
23 |
+
with open("info.txt", "r", encoding="utf-8") as f:
|
24 |
+
st.markdown(f.read())
|
25 |
+
|
26 |
+
duplicate_button = """<a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/Bingsu/color_textual_inversion?duplicate=true"><img style="margin: 0" src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a>"""
|
27 |
+
st.markdown(duplicate_button, unsafe_allow_html=True)
|
28 |
+
|
29 |
+
col1, col2 = st.columns([15, 85])
|
30 |
+
color = col1.color_picker("Pick a color", "#00f900")
|
31 |
+
col2.text_input("", color, disabled=True)
|
32 |
+
|
33 |
+
emb_name = st.text_input("Embedding name", color.lstrip("#").upper())
|
34 |
+
init_token = st.text_input("Initializer token", "init token name")
|
35 |
+
rgb = hex_to_rgb(color)
|
36 |
+
|
37 |
+
img_array = np.zeros((128, 128, 3), dtype=np.uint8)
|
38 |
+
for i in range(3):
|
39 |
+
img_array[..., i] = rgb[i]
|
40 |
+
|
41 |
+
dataset_temp = TemporaryDirectory(prefix="dataset_", dir=".")
|
42 |
+
dataset_path = Path(dataset_temp.name)
|
43 |
+
output_temp = TemporaryDirectory(prefix="output_", dir=".")
|
44 |
+
output_path = Path(output_temp.name)
|
45 |
+
|
46 |
+
img_path = dataset_path / f"{emb_name}.png"
|
47 |
+
Image.fromarray(img_array).save(img_path)
|
48 |
+
|
49 |
+
with st.sidebar:
|
50 |
+
model_name = st.text_input("Model name", "Linaqruf/anything-v3.0")
|
51 |
+
steps = st.slider("Steps", 1, 100, 30, step=1)
|
52 |
+
learning_rate = st.text_input("Learning rate", "0.005")
|
53 |
+
learning_rate = float(learning_rate)
|
54 |
+
|
55 |
+
tokenizer = CLIPTokenizer.from_pretrained(model_name, subfolder="tokenizer")
|
56 |
+
|
57 |
+
# case 1: init_token is not a single token
|
58 |
+
token = tokenizer.tokenize(init_token)
|
59 |
+
if len(token) > 1:
|
60 |
+
st.warning("Initializer token must be a single token")
|
61 |
+
st.stop()
|
62 |
+
|
63 |
+
# case 2: init_token already exists in the tokenizer
|
64 |
+
num_added_tokens = tokenizer.add_tokens(emb_name)
|
65 |
+
if num_added_tokens == 0:
|
66 |
+
st.warning(f"The tokenizer already contains the token {emb_name}")
|
67 |
+
st.stop()
|
68 |
+
|
69 |
+
cmd = """
|
70 |
+
accelerate launch textual_inversion.py \
|
71 |
+
--pretrained_model_name_or_path={model_name} \
|
72 |
+
--train_data_dir={dataset_path} \
|
73 |
+
--learnable_property="style" \
|
74 |
+
--placeholder_token="{emb_name}" \
|
75 |
+
--initializer_token="{init}" \
|
76 |
+
--resolution=128 \
|
77 |
+
--train_batch_size=1 \
|
78 |
+
--repeats=1 \
|
79 |
+
--gradient_accumulation_steps=1 \
|
80 |
+
--max_train_steps={steps} \
|
81 |
+
--learning_rate={lr} \
|
82 |
+
--output_dir={output_path} \
|
83 |
+
--only_save_embeds
|
84 |
+
""".strip()
|
85 |
+
|
86 |
+
cmd = dedent(cmd).format(
|
87 |
+
model_name=model_name,
|
88 |
+
dataset_path=dataset_path.as_posix(),
|
89 |
+
emb_name=emb_name,
|
90 |
+
init=init_token,
|
91 |
+
steps=steps,
|
92 |
+
lr=learning_rate,
|
93 |
+
output_path=output_path.as_posix(),
|
94 |
+
)
|
95 |
+
cmd = shlex.split(cmd)
|
96 |
+
|
97 |
+
result_path = output_path / "learned_embeds.bin"
|
98 |
+
captured = ""
|
99 |
+
|
100 |
+
start_button = st.button("Start")
|
101 |
+
download_button = st.empty()
|
102 |
+
|
103 |
+
if start_button:
|
104 |
+
with st.spinner("Training..."):
|
105 |
+
placeholder = st.empty()
|
106 |
+
p = subprocess.Popen(
|
107 |
+
cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, encoding="utf-8"
|
108 |
+
)
|
109 |
+
|
110 |
+
while line := p.stderr.readline():
|
111 |
+
captured += line
|
112 |
+
placeholder.code(captured, language="bash")
|
113 |
+
|
114 |
+
if not result_path.exists():
|
115 |
+
st.stop()
|
116 |
+
|
117 |
+
# fix unknown file volume bug
|
118 |
+
trained_emb = torch.load(result_path, map_location="cpu")
|
119 |
+
for k, v in trained_emb.items():
|
120 |
+
trained_emb[k] = torch.from_numpy(v.numpy())
|
121 |
+
torch.save(trained_emb, result_path)
|
122 |
+
|
123 |
+
file = result_path.read_bytes()
|
124 |
+
download_button.download_button(f"Download {emb_name}.pt", file, f"{emb_name}.pt")
|
125 |
+
st.download_button(f"Download {emb_name}.pt ", file, f"{emb_name}.pt")
|
126 |
+
|
127 |
+
dataset_temp.cleanup()
|
128 |
+
output_temp.cleanup()
|
info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Create an embedding that represents a color code.
|
2 |
+
|
3 |
+
Using only one simple color image, textual inversion training is performed.
|
4 |
+
|
5 |
+
This idea is from the arcalive AI image channel, [내가 원하는 색상코드를 만들어 사용해 보자](https://arca.live/b/aiart/64702219).
|
6 |
+
|
7 |
+
However, this space uses an implementation of huggingface diffusers, so the result is different from webui. Please be careful on this point.
|
pdm.lock
ADDED
The diff for this file is too large to render.
See raw diff
|
|
pyproject.toml
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[project]
|
2 |
+
name = "color-textual-inversion"
|
3 |
+
version = "0.1.3"
|
4 |
+
description = ""
|
5 |
+
authors = [
|
6 |
+
{name = "Bingsu", email = "[email protected]"},
|
7 |
+
]
|
8 |
+
dependencies = [
|
9 |
+
"torch",
|
10 |
+
"torchvision",
|
11 |
+
"accelerate",
|
12 |
+
"ftfy",
|
13 |
+
"tensorboard",
|
14 |
+
"modelcards",
|
15 |
+
"transformers>=4.21.0",
|
16 |
+
"diffusers",
|
17 |
+
"streamlit==1.10.0",
|
18 |
+
]
|
19 |
+
license = {text = "MIT"}
|
20 |
+
requires-python = ">=3.9"
|
21 |
+
|
22 |
+
[tool]
|
23 |
+
[tool.pdm]
|
24 |
+
[tool.pdm.dev-dependencies]
|
25 |
+
dev = [
|
26 |
+
"black>=22.10.0",
|
27 |
+
"isort>=5.10.1",
|
28 |
+
"mypy>=0.991",
|
29 |
+
"flake8-bugbear>=22.12.6",
|
30 |
+
"ipywidgets>=8.0.3",
|
31 |
+
]
|
32 |
+
|
33 |
+
[tool.pdm.scripts]
|
34 |
+
st = "streamlit run app.py"
|
35 |
+
black = "black ."
|
36 |
+
isort = "isort ."
|
37 |
+
format = {composite = ["isort", "black"]}
|
38 |
+
|
39 |
+
[tool.isort]
|
40 |
+
profile = "black"
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
torchvision
|
3 |
+
accelerate
|
4 |
+
ftfy
|
5 |
+
tensorboard
|
6 |
+
modelcards
|
7 |
+
transformers>=4.21.0
|
8 |
+
diffusers
|
9 |
+
streamlit==1.10.0
|
textual_inversion.py
ADDED
@@ -0,0 +1,769 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import itertools
|
3 |
+
import math
|
4 |
+
import os
|
5 |
+
import random
|
6 |
+
from pathlib import Path
|
7 |
+
from typing import Optional
|
8 |
+
|
9 |
+
import numpy as np
|
10 |
+
import PIL
|
11 |
+
import torch
|
12 |
+
import torch.nn.functional as F
|
13 |
+
import torch.utils.checkpoint
|
14 |
+
from accelerate import Accelerator
|
15 |
+
from accelerate.logging import get_logger
|
16 |
+
from accelerate.utils import set_seed
|
17 |
+
from diffusers import (
|
18 |
+
AutoencoderKL,
|
19 |
+
DDPMScheduler,
|
20 |
+
PNDMScheduler,
|
21 |
+
StableDiffusionPipeline,
|
22 |
+
UNet2DConditionModel,
|
23 |
+
)
|
24 |
+
from diffusers.optimization import get_scheduler
|
25 |
+
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
|
26 |
+
|
27 |
+
# from diffusers.utils import check_min_version
|
28 |
+
from huggingface_hub import HfFolder, Repository, whoami
|
29 |
+
|
30 |
+
# TODO: remove and import from diffusers.utils when the new version of diffusers is released
|
31 |
+
from packaging import version
|
32 |
+
from PIL import Image
|
33 |
+
from torch.utils.data import Dataset
|
34 |
+
from torchvision import transforms
|
35 |
+
from tqdm.auto import tqdm
|
36 |
+
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
|
37 |
+
|
38 |
+
if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("9.1.0"):
|
39 |
+
PIL_INTERPOLATION = {
|
40 |
+
"linear": PIL.Image.Resampling.BILINEAR,
|
41 |
+
"bilinear": PIL.Image.Resampling.BILINEAR,
|
42 |
+
"bicubic": PIL.Image.Resampling.BICUBIC,
|
43 |
+
"lanczos": PIL.Image.Resampling.LANCZOS,
|
44 |
+
"nearest": PIL.Image.Resampling.NEAREST,
|
45 |
+
}
|
46 |
+
else:
|
47 |
+
PIL_INTERPOLATION = {
|
48 |
+
"linear": PIL.Image.LINEAR,
|
49 |
+
"bilinear": PIL.Image.BILINEAR,
|
50 |
+
"bicubic": PIL.Image.BICUBIC,
|
51 |
+
"lanczos": PIL.Image.LANCZOS,
|
52 |
+
"nearest": PIL.Image.NEAREST,
|
53 |
+
}
|
54 |
+
# ------------------------------------------------------------------------------
|
55 |
+
|
56 |
+
|
57 |
+
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
|
58 |
+
# check_min_version("0.10.0.dev0")
|
59 |
+
|
60 |
+
|
61 |
+
logger = get_logger(__name__)
|
62 |
+
|
63 |
+
|
64 |
+
def save_progress(text_encoder, placeholder_token_id, accelerator, args, save_path):
|
65 |
+
logger.info("Saving embeddings")
|
66 |
+
learned_embeds = (
|
67 |
+
accelerator.unwrap_model(text_encoder)
|
68 |
+
.get_input_embeddings()
|
69 |
+
.weight[placeholder_token_id]
|
70 |
+
)
|
71 |
+
learned_embeds_dict = {args.placeholder_token: learned_embeds.detach().cpu()}
|
72 |
+
torch.save(learned_embeds_dict, save_path)
|
73 |
+
|
74 |
+
|
75 |
+
def parse_args():
|
76 |
+
parser = argparse.ArgumentParser(description="Simple example of a training script.")
|
77 |
+
parser.add_argument(
|
78 |
+
"--save_steps",
|
79 |
+
type=int,
|
80 |
+
default=500,
|
81 |
+
help="Save learned_embeds.bin every X updates steps.",
|
82 |
+
)
|
83 |
+
parser.add_argument(
|
84 |
+
"--only_save_embeds",
|
85 |
+
action="store_true",
|
86 |
+
default=False,
|
87 |
+
help="Save only the embeddings for the new concept.",
|
88 |
+
)
|
89 |
+
parser.add_argument(
|
90 |
+
"--pretrained_model_name_or_path",
|
91 |
+
type=str,
|
92 |
+
default=None,
|
93 |
+
required=True,
|
94 |
+
help="Path to pretrained model or model identifier from huggingface.co/models.",
|
95 |
+
)
|
96 |
+
parser.add_argument(
|
97 |
+
"--revision",
|
98 |
+
type=str,
|
99 |
+
default=None,
|
100 |
+
required=False,
|
101 |
+
help="Revision of pretrained model identifier from huggingface.co/models.",
|
102 |
+
)
|
103 |
+
parser.add_argument(
|
104 |
+
"--tokenizer_name",
|
105 |
+
type=str,
|
106 |
+
default=None,
|
107 |
+
help="Pretrained tokenizer name or path if not the same as model_name",
|
108 |
+
)
|
109 |
+
parser.add_argument(
|
110 |
+
"--train_data_dir",
|
111 |
+
type=str,
|
112 |
+
default=None,
|
113 |
+
required=True,
|
114 |
+
help="A folder containing the training data.",
|
115 |
+
)
|
116 |
+
parser.add_argument(
|
117 |
+
"--placeholder_token",
|
118 |
+
type=str,
|
119 |
+
default=None,
|
120 |
+
required=True,
|
121 |
+
help="A token to use as a placeholder for the concept.",
|
122 |
+
)
|
123 |
+
parser.add_argument(
|
124 |
+
"--initializer_token",
|
125 |
+
type=str,
|
126 |
+
default=None,
|
127 |
+
required=True,
|
128 |
+
help="A token to use as initializer word.",
|
129 |
+
)
|
130 |
+
parser.add_argument(
|
131 |
+
"--learnable_property",
|
132 |
+
type=str,
|
133 |
+
default="object",
|
134 |
+
help="Choose between 'object' and 'style'",
|
135 |
+
)
|
136 |
+
parser.add_argument(
|
137 |
+
"--repeats",
|
138 |
+
type=int,
|
139 |
+
default=100,
|
140 |
+
help="How many times to repeat the training data.",
|
141 |
+
)
|
142 |
+
parser.add_argument(
|
143 |
+
"--output_dir",
|
144 |
+
type=str,
|
145 |
+
default="text-inversion-model",
|
146 |
+
help="The output directory where the model predictions and checkpoints will be written.",
|
147 |
+
)
|
148 |
+
parser.add_argument(
|
149 |
+
"--seed", type=int, default=None, help="A seed for reproducible training."
|
150 |
+
)
|
151 |
+
parser.add_argument(
|
152 |
+
"--resolution",
|
153 |
+
type=int,
|
154 |
+
default=512,
|
155 |
+
help=(
|
156 |
+
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
|
157 |
+
" resolution"
|
158 |
+
),
|
159 |
+
)
|
160 |
+
parser.add_argument(
|
161 |
+
"--center_crop",
|
162 |
+
action="store_true",
|
163 |
+
help="Whether to center crop images before resizing to resolution",
|
164 |
+
)
|
165 |
+
parser.add_argument(
|
166 |
+
"--train_batch_size",
|
167 |
+
type=int,
|
168 |
+
default=16,
|
169 |
+
help="Batch size (per device) for the training dataloader.",
|
170 |
+
)
|
171 |
+
parser.add_argument("--num_train_epochs", type=int, default=100)
|
172 |
+
parser.add_argument(
|
173 |
+
"--max_train_steps",
|
174 |
+
type=int,
|
175 |
+
default=5000,
|
176 |
+
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
|
177 |
+
)
|
178 |
+
parser.add_argument(
|
179 |
+
"--gradient_accumulation_steps",
|
180 |
+
type=int,
|
181 |
+
default=1,
|
182 |
+
help="Number of updates steps to accumulate before performing a backward/update pass.",
|
183 |
+
)
|
184 |
+
parser.add_argument(
|
185 |
+
"--learning_rate",
|
186 |
+
type=float,
|
187 |
+
default=1e-4,
|
188 |
+
help="Initial learning rate (after the potential warmup period) to use.",
|
189 |
+
)
|
190 |
+
parser.add_argument(
|
191 |
+
"--scale_lr",
|
192 |
+
action="store_true",
|
193 |
+
default=True,
|
194 |
+
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
|
195 |
+
)
|
196 |
+
parser.add_argument(
|
197 |
+
"--lr_scheduler",
|
198 |
+
type=str,
|
199 |
+
default="constant",
|
200 |
+
help=(
|
201 |
+
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
|
202 |
+
' "constant", "constant_with_warmup"]'
|
203 |
+
),
|
204 |
+
)
|
205 |
+
parser.add_argument(
|
206 |
+
"--lr_warmup_steps",
|
207 |
+
type=int,
|
208 |
+
default=500,
|
209 |
+
help="Number of steps for the warmup in the lr scheduler.",
|
210 |
+
)
|
211 |
+
parser.add_argument(
|
212 |
+
"--adam_beta1",
|
213 |
+
type=float,
|
214 |
+
default=0.9,
|
215 |
+
help="The beta1 parameter for the Adam optimizer.",
|
216 |
+
)
|
217 |
+
parser.add_argument(
|
218 |
+
"--adam_beta2",
|
219 |
+
type=float,
|
220 |
+
default=0.999,
|
221 |
+
help="The beta2 parameter for the Adam optimizer.",
|
222 |
+
)
|
223 |
+
parser.add_argument(
|
224 |
+
"--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use."
|
225 |
+
)
|
226 |
+
parser.add_argument(
|
227 |
+
"--adam_epsilon",
|
228 |
+
type=float,
|
229 |
+
default=1e-08,
|
230 |
+
help="Epsilon value for the Adam optimizer",
|
231 |
+
)
|
232 |
+
parser.add_argument(
|
233 |
+
"--push_to_hub",
|
234 |
+
action="store_true",
|
235 |
+
help="Whether or not to push the model to the Hub.",
|
236 |
+
)
|
237 |
+
parser.add_argument(
|
238 |
+
"--hub_token",
|
239 |
+
type=str,
|
240 |
+
default=None,
|
241 |
+
help="The token to use to push to the Model Hub.",
|
242 |
+
)
|
243 |
+
parser.add_argument(
|
244 |
+
"--hub_model_id",
|
245 |
+
type=str,
|
246 |
+
default=None,
|
247 |
+
help="The name of the repository to keep in sync with the local `output_dir`.",
|
248 |
+
)
|
249 |
+
parser.add_argument(
|
250 |
+
"--logging_dir",
|
251 |
+
type=str,
|
252 |
+
default="logs",
|
253 |
+
help=(
|
254 |
+
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
|
255 |
+
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
|
256 |
+
),
|
257 |
+
)
|
258 |
+
parser.add_argument(
|
259 |
+
"--mixed_precision",
|
260 |
+
type=str,
|
261 |
+
default="no",
|
262 |
+
choices=["no", "fp16", "bf16"],
|
263 |
+
help=(
|
264 |
+
"Whether to use mixed precision. Choose"
|
265 |
+
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
|
266 |
+
"and an Nvidia Ampere GPU."
|
267 |
+
),
|
268 |
+
)
|
269 |
+
parser.add_argument(
|
270 |
+
"--local_rank",
|
271 |
+
type=int,
|
272 |
+
default=-1,
|
273 |
+
help="For distributed training: local_rank",
|
274 |
+
)
|
275 |
+
|
276 |
+
args = parser.parse_args()
|
277 |
+
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
|
278 |
+
if env_local_rank != -1 and env_local_rank != args.local_rank:
|
279 |
+
args.local_rank = env_local_rank
|
280 |
+
|
281 |
+
if args.train_data_dir is None:
|
282 |
+
raise ValueError("You must specify a train data directory.")
|
283 |
+
|
284 |
+
return args
|
285 |
+
|
286 |
+
|
287 |
+
imagenet_templates_small = [
|
288 |
+
"a photo of a {}",
|
289 |
+
"a rendering of a {}",
|
290 |
+
"a cropped photo of the {}",
|
291 |
+
"the photo of a {}",
|
292 |
+
"a photo of a clean {}",
|
293 |
+
"a photo of a dirty {}",
|
294 |
+
"a dark photo of the {}",
|
295 |
+
"a photo of my {}",
|
296 |
+
"a photo of the cool {}",
|
297 |
+
"a close-up photo of a {}",
|
298 |
+
"a bright photo of the {}",
|
299 |
+
"a cropped photo of a {}",
|
300 |
+
"a photo of the {}",
|
301 |
+
"a good photo of the {}",
|
302 |
+
"a photo of one {}",
|
303 |
+
"a close-up photo of the {}",
|
304 |
+
"a rendition of the {}",
|
305 |
+
"a photo of the clean {}",
|
306 |
+
"a rendition of a {}",
|
307 |
+
"a photo of a nice {}",
|
308 |
+
"a good photo of a {}",
|
309 |
+
"a photo of the nice {}",
|
310 |
+
"a photo of the small {}",
|
311 |
+
"a photo of the weird {}",
|
312 |
+
"a photo of the large {}",
|
313 |
+
"a photo of a cool {}",
|
314 |
+
"a photo of a small {}",
|
315 |
+
]
|
316 |
+
|
317 |
+
imagenet_style_templates_small = [
|
318 |
+
"a painting of {}, art by *",
|
319 |
+
"a rendering of {}, art by *",
|
320 |
+
"a cropped painting of {}, art by *",
|
321 |
+
"the painting of {}, art by *",
|
322 |
+
"a clean painting of {}, art by *",
|
323 |
+
"a dirty painting of {}, art by *",
|
324 |
+
"a dark painting of {}, art by *",
|
325 |
+
"a picture of {}, art by *",
|
326 |
+
"a cool painting of {}, art by *",
|
327 |
+
"a close-up painting of {}, art by *",
|
328 |
+
"a bright painting of {}, art by *",
|
329 |
+
"a cropped painting of {}, art by *",
|
330 |
+
"a good painting of {}, art by *",
|
331 |
+
"a close-up painting of {}, art by *",
|
332 |
+
"a rendition of {}, art by *",
|
333 |
+
"a nice painting of {}, art by *",
|
334 |
+
"a small painting of {}, art by *",
|
335 |
+
"a weird painting of {}, art by *",
|
336 |
+
"a large painting of {}, art by *",
|
337 |
+
]
|
338 |
+
|
339 |
+
|
340 |
+
class TextualInversionDataset(Dataset):
|
341 |
+
def __init__(
|
342 |
+
self,
|
343 |
+
data_root,
|
344 |
+
tokenizer,
|
345 |
+
learnable_property="object", # [object, style]
|
346 |
+
size=512,
|
347 |
+
repeats=100,
|
348 |
+
interpolation="bicubic",
|
349 |
+
flip_p=0.5,
|
350 |
+
set="train",
|
351 |
+
placeholder_token="*",
|
352 |
+
center_crop=False,
|
353 |
+
):
|
354 |
+
self.data_root = data_root
|
355 |
+
self.tokenizer = tokenizer
|
356 |
+
self.learnable_property = learnable_property
|
357 |
+
self.size = size
|
358 |
+
self.placeholder_token = placeholder_token
|
359 |
+
self.center_crop = center_crop
|
360 |
+
self.flip_p = flip_p
|
361 |
+
|
362 |
+
self.image_paths = [
|
363 |
+
os.path.join(self.data_root, file_path)
|
364 |
+
for file_path in os.listdir(self.data_root)
|
365 |
+
]
|
366 |
+
|
367 |
+
self.num_images = len(self.image_paths)
|
368 |
+
self._length = self.num_images
|
369 |
+
|
370 |
+
if set == "train":
|
371 |
+
self._length = self.num_images * repeats
|
372 |
+
|
373 |
+
self.interpolation = {
|
374 |
+
"linear": PIL_INTERPOLATION["linear"],
|
375 |
+
"bilinear": PIL_INTERPOLATION["bilinear"],
|
376 |
+
"bicubic": PIL_INTERPOLATION["bicubic"],
|
377 |
+
"lanczos": PIL_INTERPOLATION["lanczos"],
|
378 |
+
}[interpolation]
|
379 |
+
|
380 |
+
self.templates = (
|
381 |
+
imagenet_style_templates_small
|
382 |
+
if learnable_property == "style"
|
383 |
+
else imagenet_templates_small
|
384 |
+
)
|
385 |
+
self.flip_transform = transforms.RandomHorizontalFlip(p=self.flip_p)
|
386 |
+
|
387 |
+
def __len__(self):
|
388 |
+
return self._length
|
389 |
+
|
390 |
+
def __getitem__(self, i):
|
391 |
+
example = {}
|
392 |
+
image = Image.open(self.image_paths[i % self.num_images])
|
393 |
+
|
394 |
+
if image.mode != "RGB":
|
395 |
+
image = image.convert("RGB")
|
396 |
+
|
397 |
+
placeholder_string = self.placeholder_token
|
398 |
+
text = random.choice(self.templates).format(placeholder_string)
|
399 |
+
|
400 |
+
example["input_ids"] = self.tokenizer(
|
401 |
+
text,
|
402 |
+
padding="max_length",
|
403 |
+
truncation=True,
|
404 |
+
max_length=self.tokenizer.model_max_length,
|
405 |
+
return_tensors="pt",
|
406 |
+
).input_ids[0]
|
407 |
+
|
408 |
+
# default to score-sde preprocessing
|
409 |
+
img = np.array(image).astype(np.uint8)
|
410 |
+
|
411 |
+
if self.center_crop:
|
412 |
+
crop = min(img.shape[0], img.shape[1])
|
413 |
+
h, w, = (
|
414 |
+
img.shape[0],
|
415 |
+
img.shape[1],
|
416 |
+
)
|
417 |
+
img = img[
|
418 |
+
(h - crop) // 2 : (h + crop) // 2, (w - crop) // 2 : (w + crop) // 2
|
419 |
+
]
|
420 |
+
|
421 |
+
image = Image.fromarray(img)
|
422 |
+
image = image.resize((self.size, self.size), resample=self.interpolation)
|
423 |
+
|
424 |
+
image = self.flip_transform(image)
|
425 |
+
image = np.array(image).astype(np.uint8)
|
426 |
+
image = (image / 127.5 - 1.0).astype(np.float32)
|
427 |
+
|
428 |
+
example["pixel_values"] = torch.from_numpy(image).permute(2, 0, 1)
|
429 |
+
return example
|
430 |
+
|
431 |
+
|
432 |
+
def get_full_repo_name(
|
433 |
+
model_id: str, organization: Optional[str] = None, token: Optional[str] = None
|
434 |
+
):
|
435 |
+
if token is None:
|
436 |
+
token = HfFolder.get_token()
|
437 |
+
if organization is None:
|
438 |
+
username = whoami(token)["name"]
|
439 |
+
return f"{username}/{model_id}"
|
440 |
+
else:
|
441 |
+
return f"{organization}/{model_id}"
|
442 |
+
|
443 |
+
|
444 |
+
def freeze_params(params):
|
445 |
+
for param in params:
|
446 |
+
param.requires_grad = False
|
447 |
+
|
448 |
+
|
449 |
+
def main():
|
450 |
+
args = parse_args()
|
451 |
+
# logging_dir = os.path.join(args.output_dir, args.logging_dir)
|
452 |
+
|
453 |
+
accelerator = Accelerator(
|
454 |
+
gradient_accumulation_steps=args.gradient_accumulation_steps,
|
455 |
+
mixed_precision=args.mixed_precision,
|
456 |
+
)
|
457 |
+
|
458 |
+
# If passed along, set the training seed now.
|
459 |
+
if args.seed is not None:
|
460 |
+
set_seed(args.seed)
|
461 |
+
|
462 |
+
# Handle the repository creation
|
463 |
+
if accelerator.is_main_process:
|
464 |
+
if args.push_to_hub:
|
465 |
+
if args.hub_model_id is None:
|
466 |
+
repo_name = get_full_repo_name(
|
467 |
+
Path(args.output_dir).name, token=args.hub_token
|
468 |
+
)
|
469 |
+
else:
|
470 |
+
repo_name = args.hub_model_id
|
471 |
+
repo = Repository(args.output_dir, clone_from=repo_name)
|
472 |
+
|
473 |
+
with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
|
474 |
+
if "step_*" not in gitignore:
|
475 |
+
gitignore.write("step_*\n")
|
476 |
+
if "epoch_*" not in gitignore:
|
477 |
+
gitignore.write("epoch_*\n")
|
478 |
+
elif args.output_dir is not None:
|
479 |
+
os.makedirs(args.output_dir, exist_ok=True)
|
480 |
+
|
481 |
+
# Load the tokenizer and add the placeholder token as a additional special token
|
482 |
+
if args.tokenizer_name:
|
483 |
+
tokenizer = CLIPTokenizer.from_pretrained(args.tokenizer_name)
|
484 |
+
elif args.pretrained_model_name_or_path:
|
485 |
+
tokenizer = CLIPTokenizer.from_pretrained(
|
486 |
+
args.pretrained_model_name_or_path, subfolder="tokenizer"
|
487 |
+
)
|
488 |
+
|
489 |
+
# Add the placeholder token in tokenizer
|
490 |
+
num_added_tokens = tokenizer.add_tokens(args.placeholder_token)
|
491 |
+
if num_added_tokens == 0:
|
492 |
+
raise ValueError(
|
493 |
+
f"The tokenizer already contains the token {args.placeholder_token}. Please pass a different"
|
494 |
+
" `placeholder_token` that is not already in the tokenizer."
|
495 |
+
)
|
496 |
+
|
497 |
+
# Convert the initializer_token, placeholder_token to ids
|
498 |
+
token_ids = tokenizer.encode(args.initializer_token, add_special_tokens=False)
|
499 |
+
# Check if initializer_token is a single token or a sequence of tokens
|
500 |
+
if len(token_ids) > 1:
|
501 |
+
raise ValueError("The initializer token must be a single token.")
|
502 |
+
|
503 |
+
initializer_token_id = token_ids[0]
|
504 |
+
placeholder_token_id = tokenizer.convert_tokens_to_ids(args.placeholder_token)
|
505 |
+
|
506 |
+
# Load models and create wrapper for stable diffusion
|
507 |
+
text_encoder = CLIPTextModel.from_pretrained(
|
508 |
+
args.pretrained_model_name_or_path,
|
509 |
+
subfolder="text_encoder",
|
510 |
+
revision=args.revision,
|
511 |
+
)
|
512 |
+
vae = AutoencoderKL.from_pretrained(
|
513 |
+
args.pretrained_model_name_or_path,
|
514 |
+
subfolder="vae",
|
515 |
+
revision=args.revision,
|
516 |
+
)
|
517 |
+
unet = UNet2DConditionModel.from_pretrained(
|
518 |
+
args.pretrained_model_name_or_path,
|
519 |
+
subfolder="unet",
|
520 |
+
revision=args.revision,
|
521 |
+
)
|
522 |
+
|
523 |
+
# Resize the token embeddings as we are adding new special tokens to the tokenizer
|
524 |
+
text_encoder.resize_token_embeddings(len(tokenizer))
|
525 |
+
|
526 |
+
# Initialise the newly added placeholder token with the embeddings of the initializer token
|
527 |
+
token_embeds = text_encoder.get_input_embeddings().weight.data
|
528 |
+
token_embeds[placeholder_token_id] = token_embeds[initializer_token_id]
|
529 |
+
|
530 |
+
# Freeze vae and unet
|
531 |
+
freeze_params(vae.parameters())
|
532 |
+
freeze_params(unet.parameters())
|
533 |
+
# Freeze all parameters except for the token embeddings in text encoder
|
534 |
+
params_to_freeze = itertools.chain(
|
535 |
+
text_encoder.text_model.encoder.parameters(),
|
536 |
+
text_encoder.text_model.final_layer_norm.parameters(),
|
537 |
+
text_encoder.text_model.embeddings.position_embedding.parameters(),
|
538 |
+
)
|
539 |
+
freeze_params(params_to_freeze)
|
540 |
+
|
541 |
+
if args.scale_lr:
|
542 |
+
args.learning_rate = (
|
543 |
+
args.learning_rate
|
544 |
+
* args.gradient_accumulation_steps
|
545 |
+
* args.train_batch_size
|
546 |
+
* accelerator.num_processes
|
547 |
+
)
|
548 |
+
|
549 |
+
# Initialize the optimizer
|
550 |
+
optimizer = torch.optim.AdamW(
|
551 |
+
text_encoder.get_input_embeddings().parameters(), # only optimize the embeddings
|
552 |
+
lr=args.learning_rate,
|
553 |
+
betas=(args.adam_beta1, args.adam_beta2),
|
554 |
+
weight_decay=args.adam_weight_decay,
|
555 |
+
eps=args.adam_epsilon,
|
556 |
+
)
|
557 |
+
|
558 |
+
noise_scheduler = DDPMScheduler.from_pretrained(
|
559 |
+
args.pretrained_model_name_or_path, subfolder="scheduler"
|
560 |
+
)
|
561 |
+
|
562 |
+
train_dataset = TextualInversionDataset(
|
563 |
+
data_root=args.train_data_dir,
|
564 |
+
tokenizer=tokenizer,
|
565 |
+
size=args.resolution,
|
566 |
+
placeholder_token=args.placeholder_token,
|
567 |
+
repeats=args.repeats,
|
568 |
+
learnable_property=args.learnable_property,
|
569 |
+
center_crop=args.center_crop,
|
570 |
+
set="train",
|
571 |
+
)
|
572 |
+
train_dataloader = torch.utils.data.DataLoader(
|
573 |
+
train_dataset, batch_size=args.train_batch_size, shuffle=True
|
574 |
+
)
|
575 |
+
|
576 |
+
# Scheduler and math around the number of training steps.
|
577 |
+
overrode_max_train_steps = False
|
578 |
+
num_update_steps_per_epoch = math.ceil(
|
579 |
+
len(train_dataloader) / args.gradient_accumulation_steps
|
580 |
+
)
|
581 |
+
if args.max_train_steps is None:
|
582 |
+
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
|
583 |
+
overrode_max_train_steps = True
|
584 |
+
|
585 |
+
lr_scheduler = get_scheduler(
|
586 |
+
args.lr_scheduler,
|
587 |
+
optimizer=optimizer,
|
588 |
+
num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps,
|
589 |
+
num_training_steps=args.max_train_steps * args.gradient_accumulation_steps,
|
590 |
+
)
|
591 |
+
|
592 |
+
text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
|
593 |
+
text_encoder, optimizer, train_dataloader, lr_scheduler
|
594 |
+
)
|
595 |
+
|
596 |
+
# Move vae and unet to device
|
597 |
+
vae.to(accelerator.device)
|
598 |
+
unet.to(accelerator.device)
|
599 |
+
|
600 |
+
# Keep vae and unet in eval model as we don't train these
|
601 |
+
vae.eval()
|
602 |
+
unet.eval()
|
603 |
+
|
604 |
+
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
|
605 |
+
num_update_steps_per_epoch = math.ceil(
|
606 |
+
len(train_dataloader) / args.gradient_accumulation_steps
|
607 |
+
)
|
608 |
+
if overrode_max_train_steps:
|
609 |
+
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
|
610 |
+
# Afterwards we recalculate our number of training epochs
|
611 |
+
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
|
612 |
+
|
613 |
+
# We need to initialize the trackers we use, and also store our configuration.
|
614 |
+
# The trackers initializes automatically on the main process.
|
615 |
+
if accelerator.is_main_process:
|
616 |
+
accelerator.init_trackers("textual_inversion", config=vars(args))
|
617 |
+
|
618 |
+
# Train!
|
619 |
+
total_batch_size = (
|
620 |
+
args.train_batch_size
|
621 |
+
* accelerator.num_processes
|
622 |
+
* args.gradient_accumulation_steps
|
623 |
+
)
|
624 |
+
|
625 |
+
logger.info("***** Running training *****")
|
626 |
+
logger.info(f" Num examples = {len(train_dataset)}")
|
627 |
+
logger.info(f" Num Epochs = {args.num_train_epochs}")
|
628 |
+
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
|
629 |
+
logger.info(
|
630 |
+
f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}"
|
631 |
+
)
|
632 |
+
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
|
633 |
+
logger.info(f" Total optimization steps = {args.max_train_steps}")
|
634 |
+
# Only show the progress bar once on each machine.
|
635 |
+
progress_bar = tqdm(
|
636 |
+
range(args.max_train_steps), disable=not accelerator.is_local_main_process
|
637 |
+
)
|
638 |
+
progress_bar.set_description("Steps")
|
639 |
+
global_step = 0
|
640 |
+
|
641 |
+
for epoch in range(args.num_train_epochs):
|
642 |
+
text_encoder.train()
|
643 |
+
for step, batch in enumerate(train_dataloader):
|
644 |
+
with accelerator.accumulate(text_encoder):
|
645 |
+
# Convert images to latent space
|
646 |
+
latents = (
|
647 |
+
vae.encode(batch["pixel_values"]).latent_dist.sample().detach()
|
648 |
+
)
|
649 |
+
latents = latents * 0.18215
|
650 |
+
|
651 |
+
# Sample noise that we'll add to the latents
|
652 |
+
noise = torch.randn(latents.shape).to(latents.device)
|
653 |
+
bsz = latents.shape[0]
|
654 |
+
# Sample a random timestep for each image
|
655 |
+
timesteps = torch.randint(
|
656 |
+
0,
|
657 |
+
noise_scheduler.config.num_train_timesteps,
|
658 |
+
(bsz,),
|
659 |
+
device=latents.device,
|
660 |
+
).long()
|
661 |
+
|
662 |
+
# Add noise to the latents according to the noise magnitude at each timestep
|
663 |
+
# (this is the forward diffusion process)
|
664 |
+
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
|
665 |
+
|
666 |
+
# Get the text embedding for conditioning
|
667 |
+
encoder_hidden_states = text_encoder(batch["input_ids"])[0]
|
668 |
+
|
669 |
+
# Predict the noise residual
|
670 |
+
model_pred = unet(
|
671 |
+
noisy_latents, timesteps, encoder_hidden_states
|
672 |
+
).sample
|
673 |
+
|
674 |
+
# Get the target for loss depending on the prediction type
|
675 |
+
if noise_scheduler.config.prediction_type == "epsilon":
|
676 |
+
target = noise
|
677 |
+
elif noise_scheduler.config.prediction_type == "v_prediction":
|
678 |
+
target = noise_scheduler.get_velocity(latents, noise, timesteps)
|
679 |
+
else:
|
680 |
+
raise ValueError(
|
681 |
+
f"Unknown prediction type {noise_scheduler.config.prediction_type}"
|
682 |
+
)
|
683 |
+
|
684 |
+
loss = (
|
685 |
+
F.mse_loss(model_pred, target, reduction="none")
|
686 |
+
.mean([1, 2, 3])
|
687 |
+
.mean()
|
688 |
+
)
|
689 |
+
accelerator.backward(loss)
|
690 |
+
|
691 |
+
# Zero out the gradients for all token embeddings except the newly added
|
692 |
+
# embeddings for the concept, as we only want to optimize the concept embeddings
|
693 |
+
if accelerator.num_processes > 1:
|
694 |
+
grads = text_encoder.module.get_input_embeddings().weight.grad
|
695 |
+
else:
|
696 |
+
grads = text_encoder.get_input_embeddings().weight.grad
|
697 |
+
# Get the index for tokens that we want to zero the grads for
|
698 |
+
index_grads_to_zero = (
|
699 |
+
torch.arange(len(tokenizer)) != placeholder_token_id
|
700 |
+
)
|
701 |
+
grads.data[index_grads_to_zero, :] = grads.data[
|
702 |
+
index_grads_to_zero, :
|
703 |
+
].fill_(0)
|
704 |
+
|
705 |
+
optimizer.step()
|
706 |
+
lr_scheduler.step()
|
707 |
+
optimizer.zero_grad()
|
708 |
+
|
709 |
+
# Checks if the accelerator has performed an optimization step behind the scenes
|
710 |
+
if accelerator.sync_gradients:
|
711 |
+
progress_bar.update(1)
|
712 |
+
global_step += 1
|
713 |
+
if global_step % args.save_steps == 0:
|
714 |
+
save_path = os.path.join(
|
715 |
+
args.output_dir, f"learned_embeds-steps-{global_step}.bin"
|
716 |
+
)
|
717 |
+
save_progress(
|
718 |
+
text_encoder, placeholder_token_id, accelerator, args, save_path
|
719 |
+
)
|
720 |
+
|
721 |
+
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
|
722 |
+
progress_bar.set_postfix(**logs)
|
723 |
+
accelerator.log(logs, step=global_step)
|
724 |
+
|
725 |
+
if global_step >= args.max_train_steps:
|
726 |
+
break
|
727 |
+
|
728 |
+
accelerator.wait_for_everyone()
|
729 |
+
|
730 |
+
# Create the pipeline using using the trained modules and save it.
|
731 |
+
if accelerator.is_main_process:
|
732 |
+
if args.push_to_hub and args.only_save_embeds:
|
733 |
+
logger.warn(
|
734 |
+
"Enabling full model saving because --push_to_hub=True was specified."
|
735 |
+
)
|
736 |
+
save_full_model = True
|
737 |
+
else:
|
738 |
+
save_full_model = not args.only_save_embeds
|
739 |
+
if save_full_model:
|
740 |
+
pipeline = StableDiffusionPipeline(
|
741 |
+
text_encoder=accelerator.unwrap_model(text_encoder),
|
742 |
+
vae=vae,
|
743 |
+
unet=unet,
|
744 |
+
tokenizer=tokenizer,
|
745 |
+
scheduler=PNDMScheduler.from_pretrained(
|
746 |
+
args.pretrained_model_name_or_path, subfolder="scheduler"
|
747 |
+
),
|
748 |
+
safety_checker=StableDiffusionSafetyChecker.from_pretrained(
|
749 |
+
"CompVis/stable-diffusion-safety-checker"
|
750 |
+
),
|
751 |
+
feature_extractor=CLIPFeatureExtractor.from_pretrained(
|
752 |
+
"openai/clip-vit-base-patch32"
|
753 |
+
),
|
754 |
+
)
|
755 |
+
pipeline.save_pretrained(args.output_dir)
|
756 |
+
# Save the newly trained embeddings
|
757 |
+
save_path = os.path.join(args.output_dir, "learned_embeds.bin")
|
758 |
+
save_progress(text_encoder, placeholder_token_id, accelerator, args, save_path)
|
759 |
+
|
760 |
+
if args.push_to_hub:
|
761 |
+
repo.push_to_hub(
|
762 |
+
commit_message="End of training", blocking=False, auto_lfs_prune=True
|
763 |
+
)
|
764 |
+
|
765 |
+
accelerator.end_training()
|
766 |
+
|
767 |
+
|
768 |
+
if __name__ == "__main__":
|
769 |
+
main()
|