Spaces:
Build error
Build error
## hce_metric.py | |
import numpy as np | |
from skimage import io | |
import matplotlib.pyplot as plt | |
import cv2 as cv | |
from skimage.morphology import skeletonize | |
from skimage.morphology import erosion, dilation, disk | |
from skimage.measure import label | |
import os | |
import sys | |
from tqdm import tqdm | |
from glob import glob | |
import pickle as pkl | |
def filter_bdy_cond(bdy_, mask, cond): | |
cond = cv.dilate(cond.astype(np.uint8),disk(1)) | |
labels = label(mask) # find the connected regions | |
lbls = np.unique(labels) # the indices of the connected regions | |
indep = np.ones(lbls.shape[0]) # the label of each connected regions | |
indep[0] = 0 # 0 indicate the background region | |
boundaries = [] | |
h,w = cond.shape[0:2] | |
ind_map = np.zeros((h,w)) | |
indep_cnt = 0 | |
for i in range(0,len(bdy_)): | |
tmp_bdies = [] | |
tmp_bdy = [] | |
for j in range(0,bdy_[i].shape[0]): | |
r, c = bdy_[i][j,0,1],bdy_[i][j,0,0] | |
if(np.sum(cond[r,c])==0 or ind_map[r,c]!=0): | |
if(len(tmp_bdy)>0): | |
tmp_bdies.append(tmp_bdy) | |
tmp_bdy = [] | |
continue | |
tmp_bdy.append([c,r]) | |
ind_map[r,c] = ind_map[r,c] + 1 | |
indep[labels[r,c]] = 0 # indicates part of the boundary of this region needs human correction | |
if(len(tmp_bdy)>0): | |
tmp_bdies.append(tmp_bdy) | |
# check if the first and the last boundaries are connected | |
# if yes, invert the first boundary and attach it after the last boundary | |
if(len(tmp_bdies)>1): | |
first_x, first_y = tmp_bdies[0][0] | |
last_x, last_y = tmp_bdies[-1][-1] | |
if((abs(first_x-last_x)==1 and first_y==last_y) or | |
(first_x==last_x and abs(first_y-last_y)==1) or | |
(abs(first_x-last_x)==1 and abs(first_y-last_y)==1) | |
): | |
tmp_bdies[-1].extend(tmp_bdies[0][::-1]) | |
del tmp_bdies[0] | |
for k in range(0,len(tmp_bdies)): | |
tmp_bdies[k] = np.array(tmp_bdies[k])[:,np.newaxis,:] | |
if(len(tmp_bdies)>0): | |
boundaries.extend(tmp_bdies) | |
return boundaries, np.sum(indep) | |
# this function approximate each boundary by DP algorithm | |
# https://en.wikipedia.org/wiki/Ramer%E2%80%93Douglas%E2%80%93Peucker_algorithm | |
def approximate_RDP(boundaries,epsilon=1.0): | |
boundaries_ = [] | |
boundaries_len_ = [] | |
pixel_cnt_ = 0 | |
# polygon approximate of each boundary | |
for i in range(0,len(boundaries)): | |
boundaries_.append(cv.approxPolyDP(boundaries[i],epsilon,False)) | |
# count the control points number of each boundary and the total control points number of all the boundaries | |
for i in range(0,len(boundaries_)): | |
boundaries_len_.append(len(boundaries_[i])) | |
pixel_cnt_ = pixel_cnt_ + len(boundaries_[i]) | |
return boundaries_, boundaries_len_, pixel_cnt_ | |
def relax_HCE(gt, rs, gt_ske, relax=5, epsilon=2.0): | |
# print("max(gt_ske): ", np.amax(gt_ske)) | |
# gt_ske = gt_ske>128 | |
# print("max(gt_ske): ", np.amax(gt_ske)) | |
# Binarize gt | |
if(len(gt.shape)>2): | |
gt = gt[:,:,0] | |
epsilon_gt = 128#(np.amin(gt)+np.amax(gt))/2.0 | |
gt = (gt>epsilon_gt).astype(np.uint8) | |
# Binarize rs | |
if(len(rs.shape)>2): | |
rs = rs[:,:,0] | |
epsilon_rs = 128#(np.amin(rs)+np.amax(rs))/2.0 | |
rs = (rs>epsilon_rs).astype(np.uint8) | |
Union = np.logical_or(gt,rs) | |
TP = np.logical_and(gt,rs) | |
FP = rs - TP | |
FN = gt - TP | |
# relax the Union of gt and rs | |
Union_erode = Union.copy() | |
Union_erode = cv.erode(Union_erode.astype(np.uint8),disk(1),iterations=relax) | |
# --- get the relaxed False Positive regions for computing the human efforts in correcting them --- | |
FP_ = np.logical_and(FP,Union_erode) # get the relaxed FP | |
for i in range(0,relax): | |
FP_ = cv.dilate(FP_.astype(np.uint8),disk(1)) | |
FP_ = np.logical_and(FP_, 1-np.logical_or(TP,FN)) | |
FP_ = np.logical_and(FP, FP_) | |
# --- get the relaxed False Negative regions for computing the human efforts in correcting them --- | |
FN_ = np.logical_and(FN,Union_erode) # preserve the structural components of FN | |
## recover the FN, where pixels are not close to the TP borders | |
for i in range(0,relax): | |
FN_ = cv.dilate(FN_.astype(np.uint8),disk(1)) | |
FN_ = np.logical_and(FN_,1-np.logical_or(TP,FP)) | |
FN_ = np.logical_and(FN,FN_) | |
FN_ = np.logical_or(FN_, np.logical_xor(gt_ske,np.logical_and(TP,gt_ske))) # preserve the structural components of FN | |
## 2. =============Find exact polygon control points and independent regions============== | |
## find contours from FP_ | |
ctrs_FP, hier_FP = cv.findContours(FP_.astype(np.uint8), cv.RETR_TREE, cv.CHAIN_APPROX_NONE) | |
## find control points and independent regions for human correction | |
bdies_FP, indep_cnt_FP = filter_bdy_cond(ctrs_FP, FP_, np.logical_or(TP,FN_)) | |
## find contours from FN_ | |
ctrs_FN, hier_FN = cv.findContours(FN_.astype(np.uint8), cv.RETR_TREE, cv.CHAIN_APPROX_NONE) | |
## find control points and independent regions for human correction | |
bdies_FN, indep_cnt_FN = filter_bdy_cond(ctrs_FN, FN_, 1-np.logical_or(np.logical_or(TP,FP_),FN_)) | |
poly_FP, poly_FP_len, poly_FP_point_cnt = approximate_RDP(bdies_FP,epsilon=epsilon) | |
poly_FN, poly_FN_len, poly_FN_point_cnt = approximate_RDP(bdies_FN,epsilon=epsilon) | |
return poly_FP_point_cnt, indep_cnt_FP, poly_FN_point_cnt, indep_cnt_FN | |
def compute_hce(pred_root,gt_root,gt_ske_root): | |
gt_name_list = glob(pred_root+'/*.png') | |
gt_name_list = sorted([x.split('/')[-1] for x in gt_name_list]) | |
hces = [] | |
for gt_name in tqdm(gt_name_list, total=len(gt_name_list)): | |
gt_path = os.path.join(gt_root, gt_name) | |
pred_path = os.path.join(pred_root, gt_name) | |
gt = cv.imread(gt_path, cv.IMREAD_GRAYSCALE) | |
pred = cv.imread(pred_path, cv.IMREAD_GRAYSCALE) | |
ske_path = os.path.join(gt_ske_root,gt_name) | |
if os.path.exists(ske_path): | |
ske = cv.imread(ske_path,cv.IMREAD_GRAYSCALE) | |
ske = ske>128 | |
else: | |
ske = skeletonize(gt>128) | |
FP_points, FP_indep, FN_points, FN_indep = relax_HCE(gt, pred,ske) | |
print(gt_path.split('/')[-1],FP_points, FP_indep, FN_points, FN_indep) | |
hces.append([FP_points, FP_indep, FN_points, FN_indep, FP_points+FP_indep+FN_points+FN_indep]) | |
hce_metric ={'names': gt_name_list, | |
'hces': hces} | |
file_metric = open(pred_root+'/hce_metric.pkl','wb') | |
pkl.dump(hce_metric,file_metric) | |
# file_metrics.write(cmn_metrics) | |
file_metric.close() | |
return np.mean(np.array(hces)[:,-1]) | |
def main(): | |
gt_root = "../DIS5K/DIS-VD/gt" | |
gt_ske_root = "" | |
pred_root = "../Results/isnet(ours)/DIS-VD" | |
print("The average HCE metric: ", compute_hce(pred_root,gt_root,gt_ske_root)) | |
if __name__ == '__main__': | |
main() | |