import gradio as gr from fastai.learner import load_learner from fastai.vision.all import * learner_inf = load_learner('banana.pkl') labels = learner_inf.dls.vocab def predict(img): img = PILImage.create(img) pred, pred_idx, probs = learner_inf.predict(img) return {label: float(probs[i]) for i, label in enumerate(labels)} gr.Interface( fn=predict, inputs=gr.inputs.Image(shape=(192,192)), outputs=gr.outputs.Label(num_top_classes=3) ).launch(share=True)