|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import torch.optim as optim |
|
import torch.nn.functional as F |
|
from torch.utils.data import Dataset, DataLoader |
|
from sklearn.model_selection import train_test_split |
|
import os |
|
import pandas as pd |
|
from tqdm import tqdm |
|
from encode import rle_encode, list_to_string |
|
|
|
def dice_score(y_p, y_t, smooth=1e-6): |
|
y_p = y_p[:, :, 2:-2, 2:-2] |
|
y_p = F.softmax(y_p, dim=1) |
|
y_p = torch.argmax(y_p, dim=1, keepdim=True) |
|
i = torch.sum(y_p * y_t, dim=(2, 3)) |
|
u = torch.sum(y_p, dim=(2, 3)) + torch.sum(y_t, dim=(2, 3)) |
|
score = (2 * i + smooth)/(u + smooth) |
|
return torch.mean(score) |
|
|
|
def ce_loss(y_p, y_t): |
|
y_p = y_p[:, :, 2:-2, 2:-2] |
|
y_t = y_t.squeeze(dim=1) |
|
weight = torch.Tensor([0.57, 4.17]).to(y_t.device) |
|
criterion = nn.CrossEntropyLoss(weight) |
|
loss = criterion(y_p, y_t) |
|
return loss |
|
|
|
def false_color(band11, band14, band15): |
|
def normalize(band, bounds): |
|
return (band - bounds[0]) / (bounds[1] - bounds[0]) |
|
_T11_BOUNDS = (243, 303) |
|
_CLOUD_TOP_TDIFF_BOUNDS = (-4, 5) |
|
_TDIFF_BOUNDS = (-4, 2) |
|
r = normalize(band15 - band14, _TDIFF_BOUNDS) |
|
g = normalize(band14 - band11, _CLOUD_TOP_TDIFF_BOUNDS) |
|
b = normalize(band14, _T11_BOUNDS) |
|
return np.clip(np.stack([r, g, b], axis=2), 0, 1) |
|
|
|
class ICRGWDataset(Dataset): |
|
def __init__(self, tar_path, ids, padding_size): |
|
self.tar_path = tar_path |
|
self.ids = ids |
|
self.padding_size = padding_size |
|
def __len__(self): |
|
return len(self.ids) |
|
def __getitem__(self, idx): |
|
N_TIMES_BEFORE = 4 |
|
sample_path = f"{self.tar_path}/{self.ids[idx]}" |
|
band11 = np.load(f"{sample_path}/band_11.npy")[..., N_TIMES_BEFORE] |
|
band14 = np.load(f"{sample_path}/band_14.npy")[..., N_TIMES_BEFORE] |
|
band15 = np.load(f"{sample_path}/band_15.npy")[..., N_TIMES_BEFORE] |
|
image = false_color(band11, band14, band15) |
|
image = torch.Tensor(image) |
|
image = image.permute(2, 0, 1) |
|
padding_size = self.padding_size |
|
image = F.pad(image, (padding_size, padding_size, padding_size, padding_size), mode='reflect') |
|
try: |
|
label = np.load(f"{sample_path}/human_pixel_masks.npy") |
|
label = torch.Tensor(label).to(torch.int64) |
|
label = label.permute(2, 0, 1) |
|
except FileNotFoundError: |
|
|
|
label = torch.zeros((1, image.shape[1], image.shape[2])) |
|
return image, label |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
data_path = "./train" |
|
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") |
|
|
|
image_ids = os.listdir(data_path) |
|
|
|
ids_train, ids_valid = train_test_split(image_ids, test_size=0.1, random_state=42) |
|
print(f"TrainSize: {len(ids_train)}, ValidSize: {len(ids_valid)}") |
|
|
|
batch_size = 8 |
|
epochs = 1 |
|
lr = 1e-5 |
|
|
|
train_dataset = ICRGWDataset(data_path, ids_train, 2) |
|
valid_dataset = ICRGWDataset(data_path, ids_valid, 2) |
|
train_dataloader = DataLoader(train_dataset, batch_size, shuffle=True, num_workers=1) |
|
valid_dataloader = DataLoader(valid_dataset, 1, shuffle=None, num_workers=1) |
|
|
|
|
|
model = nn.Conv2d(3, 2, 1) |
|
model = model.to(device) |
|
model.train() |
|
|
|
optimizer = optim.Adam(model.parameters(), lr=lr) |
|
|
|
|
|
bst_dice = 0 |
|
for epoch in range(epochs): |
|
model.train() |
|
bar = tqdm(train_dataloader) |
|
tot_loss = 0 |
|
tot_score = 0 |
|
count = 0 |
|
for X, y in bar: |
|
X, y = X.to(device), y.to(device) |
|
pred = model(X) |
|
loss = ce_loss(pred, y) |
|
loss.backward() |
|
optimizer.step() |
|
optimizer.zero_grad() |
|
tot_loss += loss.item() |
|
tot_score += dice_score(pred, y) |
|
count += 1 |
|
bar.set_postfix(TrainLoss=f'{tot_loss/count:.4f}', TrainDice=f'{tot_score/count:.4f}') |
|
|
|
model.eval() |
|
bar = tqdm(valid_dataloader) |
|
tot_score = 0 |
|
count = 0 |
|
for X, y in bar: |
|
X, y = X.to(device), y.to(device) |
|
pred = model(X) |
|
tot_score += dice_score(pred, y) |
|
count += 1 |
|
bar.set_postfix(ValidDice=f'{tot_score/count:.4f}') |
|
|
|
if tot_score/count > bst_dice: |
|
bst_dice = tot_score/count |
|
torch.save(model.state_dict(), 'u-net.pth') |
|
print("current model saved!") |
|
|
|
|
|
model.eval() |
|
tot_score = 0 |
|
for X, y in valid_dataloader: |
|
X = X.to(device) |
|
y = y.to(device) |
|
pred = model(X) |
|
tot_score += dice_score(pred, y) |
|
print(f"Validation Dice Score: {tot_score/len(valid_dataloader)}") |
|
|
|
|
|
|
|
submission = pd.read_csv('sample_submission.csv', index_col='record_id') |
|
|
|
test_dataset = ICRGWDataset("test/", os.listdir('test'), 2) |
|
for idx, (X, y) in enumerate(test_dataset): |
|
X = X.to(device) |
|
pred = model(X.unsqueeze(0))[:, :, 2:-2, 2:-2] |
|
pred = torch.argmax(pred, dim=1)[0] |
|
pred = pred.detach().cpu().numpy() |
|
submission.loc[int(test_dataset.ids[idx]), 'encoded_pixels'] = list_to_string(rle_encode(pred)) |
|
submission.to_csv('submission.csv') |
|
|
|
|