|
import os |
|
import pandas as pd |
|
import numpy as np |
|
from sklearn.metrics.pairwise import cosine_similarity |
|
|
|
def get_score(submission_folder = "../env"): |
|
submission_path = os.path.join(submission_folder, "submission.csv") |
|
submission = pd.read_csv(submission_path, index_col=0) |
|
preds = submission["label"].tolist() |
|
preds = [float(pred) for pred in preds] |
|
lang = "eng" |
|
|
|
test_data_path = os.path.join(submission_folder, "data", lang, f"{lang}_test.csv") |
|
df = pd.read_csv(test_data_path) |
|
scores = df["label"].tolist() |
|
scores = [float(score) for score in scores] |
|
|
|
spearman_corr = np.corrcoef(scores, preds)[0, 1] |
|
return spearman_corr |
|
|
|
if __name__ == "__main__": |
|
print(get_score()) |