File size: 3,412 Bytes
81d4099
a29d9b4
823a87d
a29d9b4
81d4099
 
 
 
 
 
a29d9b4
81d4099
a29d9b4
81d4099
a29d9b4
81d4099
 
 
 
 
 
 
 
 
 
 
 
 
a29d9b4
81d4099
a29d9b4
81d4099
 
 
 
 
a29d9b4
81d4099
a29d9b4
81d4099
 
 
 
 
 
 
a29d9b4
81d4099
a29d9b4
81d4099
a29d9b4
81d4099
a29d9b4
81d4099
 
 
 
 
 
 
a29d9b4
81d4099
a29d9b4
81d4099
a29d9b4
81d4099
 
 
 
 
 
 
a29d9b4
81d4099
 
 
 
 
 
 
a29d9b4
81d4099
a29d9b4
 
81d4099
 
 
 
 
 
 
a29d9b4
81d4099
 
 
 
 
 
 
a29d9b4
81d4099
 
 
 
 
 
1294426
81d4099
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import gradio as gr

gr.load("models/black-forest-labs/FLUX.1-schnell").launch(share=True)

# import gradio as gr
# import numpy as np
# import random
# import spaces
# import torch
# from diffusers import DiffusionPipeline

# from transformers import pipeline

# pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell")

# def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
#     if randomize_seed:
#         seed = random.randint(0, MAX_SEED)
#     generator = torch.Generator().manual_seed(seed)
#     image = pipe(
#             prompt = prompt, 
#             width = width,
#             height = height,
#             num_inference_steps = num_inference_steps, 
#             generator = generator,
#             guidance_scale=0.0
#     ).images[0] 
#     return image, seed

# with gr.Blocks(css=css) as demo:
    
#     with gr.Column(elem_id="col-container"):
#         gr.Markdown(f"""# FLUX.1 [schnell]
# 12B param rectified flow transformer distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) for 4 step generation
# [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-schnell)]
#         """)
        
#         with gr.Row():
            
#             prompt = gr.Text(
#                 label="Prompt",
#                 show_label=False,
#                 max_lines=1,
#                 placeholder="Enter your prompt",
#                 container=False,
#             )
            
#             run_button = gr.Button("Run", scale=0)
        
#         result = gr.Image(label="Result", show_label=False)
        
#         with gr.Accordion("Advanced Settings", open=False):
            
#             seed = gr.Slider(
#                 label="Seed",
#                 minimum=0,
#                 maximum=MAX_SEED,
#                 step=1,
#                 value=0,
#             )
            
#             randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            
#             with gr.Row():
                
#                 width = gr.Slider(
#                     label="Width",
#                     minimum=256,
#                     maximum=MAX_IMAGE_SIZE,
#                     step=32,
#                     value=1024,
#                 )
                
#                 height = gr.Slider(
#                     label="Height",
#                     minimum=256,
#                     maximum=MAX_IMAGE_SIZE,
#                     step=32,
#                     value=1024,
#                 )
            
#             with gr.Row():
                
  
#                 num_inference_steps = gr.Slider(
#                     label="Number of inference steps",
#                     minimum=1,
#                     maximum=50,
#                     step=1,
#                     value=4,
#                 )
        
#         gr.Examples(
#             examples = examples,
#             fn = infer,
#             inputs = [prompt],
#             outputs = [result, seed],
#             cache_examples="lazy"
#         )

#     gr.on(
#         triggers=[run_button.click, prompt.submit],
#         fn = infer,
#         inputs = [prompt, seed, randomize_seed, width, height, num_inference_steps],
#         outputs = [result, seed]
#     )

# demo.launch()