import gradio as gr | |
gr.load("models/black-forest-labs/FLUX.1-schnell").launch(share=True) | |
# import gradio as gr | |
# import numpy as np | |
# import random | |
# import spaces | |
# import torch | |
# from diffusers import DiffusionPipeline | |
# from transformers import pipeline | |
# pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell") | |
# def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)): | |
# if randomize_seed: | |
# seed = random.randint(0, MAX_SEED) | |
# generator = torch.Generator().manual_seed(seed) | |
# image = pipe( | |
# prompt = prompt, | |
# width = width, | |
# height = height, | |
# num_inference_steps = num_inference_steps, | |
# generator = generator, | |
# guidance_scale=0.0 | |
# ).images[0] | |
# return image, seed | |
# with gr.Blocks(css=css) as demo: | |
# with gr.Column(elem_id="col-container"): | |
# gr.Markdown(f"""# FLUX.1 [schnell] | |
# 12B param rectified flow transformer distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) for 4 step generation | |
# [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-schnell)] | |
# """) | |
# with gr.Row(): | |
# prompt = gr.Text( | |
# label="Prompt", | |
# show_label=False, | |
# max_lines=1, | |
# placeholder="Enter your prompt", | |
# container=False, | |
# ) | |
# run_button = gr.Button("Run", scale=0) | |
# result = gr.Image(label="Result", show_label=False) | |
# with gr.Accordion("Advanced Settings", open=False): | |
# seed = gr.Slider( | |
# label="Seed", | |
# minimum=0, | |
# maximum=MAX_SEED, | |
# step=1, | |
# value=0, | |
# ) | |
# randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
# with gr.Row(): | |
# width = gr.Slider( | |
# label="Width", | |
# minimum=256, | |
# maximum=MAX_IMAGE_SIZE, | |
# step=32, | |
# value=1024, | |
# ) | |
# height = gr.Slider( | |
# label="Height", | |
# minimum=256, | |
# maximum=MAX_IMAGE_SIZE, | |
# step=32, | |
# value=1024, | |
# ) | |
# with gr.Row(): | |
# num_inference_steps = gr.Slider( | |
# label="Number of inference steps", | |
# minimum=1, | |
# maximum=50, | |
# step=1, | |
# value=4, | |
# ) | |
# gr.Examples( | |
# examples = examples, | |
# fn = infer, | |
# inputs = [prompt], | |
# outputs = [result, seed], | |
# cache_examples="lazy" | |
# ) | |
# gr.on( | |
# triggers=[run_button.click, prompt.submit], | |
# fn = infer, | |
# inputs = [prompt, seed, randomize_seed, width, height, num_inference_steps], | |
# outputs = [result, seed] | |
# ) | |
# demo.launch() |