import gradio as gr gr.load("models/black-forest-labs/FLUX.1-schnell").launch(share=True) # import gradio as gr # import numpy as np # import random # import spaces # import torch # from diffusers import DiffusionPipeline # from transformers import pipeline # pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell") # def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)): # if randomize_seed: # seed = random.randint(0, MAX_SEED) # generator = torch.Generator().manual_seed(seed) # image = pipe( # prompt = prompt, # width = width, # height = height, # num_inference_steps = num_inference_steps, # generator = generator, # guidance_scale=0.0 # ).images[0] # return image, seed # with gr.Blocks(css=css) as demo: # with gr.Column(elem_id="col-container"): # gr.Markdown(f"""# FLUX.1 [schnell] # 12B param rectified flow transformer distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) for 4 step generation # [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-schnell)] # """) # with gr.Row(): # prompt = gr.Text( # label="Prompt", # show_label=False, # max_lines=1, # placeholder="Enter your prompt", # container=False, # ) # run_button = gr.Button("Run", scale=0) # result = gr.Image(label="Result", show_label=False) # with gr.Accordion("Advanced Settings", open=False): # seed = gr.Slider( # label="Seed", # minimum=0, # maximum=MAX_SEED, # step=1, # value=0, # ) # randomize_seed = gr.Checkbox(label="Randomize seed", value=True) # with gr.Row(): # width = gr.Slider( # label="Width", # minimum=256, # maximum=MAX_IMAGE_SIZE, # step=32, # value=1024, # ) # height = gr.Slider( # label="Height", # minimum=256, # maximum=MAX_IMAGE_SIZE, # step=32, # value=1024, # ) # with gr.Row(): # num_inference_steps = gr.Slider( # label="Number of inference steps", # minimum=1, # maximum=50, # step=1, # value=4, # ) # gr.Examples( # examples = examples, # fn = infer, # inputs = [prompt], # outputs = [result, seed], # cache_examples="lazy" # ) # gr.on( # triggers=[run_button.click, prompt.submit], # fn = infer, # inputs = [prompt, seed, randomize_seed, width, height, num_inference_steps], # outputs = [result, seed] # ) # demo.launch()