Spaces:
Sleeping
Sleeping
yolo
Browse files- app/app.py +3 -2
- app/dashboard.ipynb +4 -15
app/app.py
CHANGED
@@ -23,6 +23,7 @@ app.layout = html.Div([
|
|
23 |
server = app.server
|
24 |
|
25 |
raw_wine_similarity_df = pd.read_csv('data/sogrape_wine.csv')
|
|
|
26 |
|
27 |
wine_similarity_df = pd.read_csv('data/wine_similarity.csv')
|
28 |
wine_list = wine_similarity_df['NAME'].unique()
|
@@ -77,7 +78,7 @@ dashboard_layout = html.Div([
|
|
77 |
html.H4(children='Wine Recommender', style={'textAlign':'center'}),
|
78 |
dcc.Dropdown(wine_list, wine_list[0], id='dropdown-selection'),
|
79 |
html.P(id='wine-recommendation', style={'textAlign':'center'}),
|
80 |
-
], className='
|
81 |
),
|
82 |
html.Div(
|
83 |
[
|
@@ -86,7 +87,7 @@ dashboard_layout = html.Div([
|
|
86 |
data=raw_wine_similarity_df.to_dict('records'),
|
87 |
columns=[{'id': c, 'name': c} for c in raw_wine_similarity_df.columns]
|
88 |
)
|
89 |
-
], className='
|
90 |
)
|
91 |
], className='row'),
|
92 |
|
|
|
23 |
server = app.server
|
24 |
|
25 |
raw_wine_similarity_df = pd.read_csv('data/sogrape_wine.csv')
|
26 |
+
raw_wine_similarity_df = raw_wine_similarity_df.iloc[:3, :]
|
27 |
|
28 |
wine_similarity_df = pd.read_csv('data/wine_similarity.csv')
|
29 |
wine_list = wine_similarity_df['NAME'].unique()
|
|
|
78 |
html.H4(children='Wine Recommender', style={'textAlign':'center'}),
|
79 |
dcc.Dropdown(wine_list, wine_list[0], id='dropdown-selection'),
|
80 |
html.P(id='wine-recommendation', style={'textAlign':'center'}),
|
81 |
+
], className='three columns',
|
82 |
),
|
83 |
html.Div(
|
84 |
[
|
|
|
87 |
data=raw_wine_similarity_df.to_dict('records'),
|
88 |
columns=[{'id': c, 'name': c} for c in raw_wine_similarity_df.columns]
|
89 |
)
|
90 |
+
], className='nine columns',
|
91 |
)
|
92 |
], className='row'),
|
93 |
|
app/dashboard.ipynb
CHANGED
@@ -2,14 +2,14 @@
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
-
"execution_count":
|
6 |
"metadata": {},
|
7 |
"outputs": [
|
8 |
{
|
9 |
"name": "stderr",
|
10 |
"output_type": "stream",
|
11 |
"text": [
|
12 |
-
"/var/folders/b4/lwfgccm95kqd2skcwvrt2fr00000gn/T/ipykernel_289/
|
13 |
"\n",
|
14 |
"Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n",
|
15 |
"\n"
|
@@ -30,7 +30,7 @@
|
|
30 |
" "
|
31 |
],
|
32 |
"text/plain": [
|
33 |
-
"<IPython.lib.display.IFrame at
|
34 |
]
|
35 |
},
|
36 |
"metadata": {},
|
@@ -48,18 +48,6 @@
|
|
48 |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
49 |
"\n"
|
50 |
]
|
51 |
-
},
|
52 |
-
{
|
53 |
-
"name": "stdout",
|
54 |
-
"output_type": "stream",
|
55 |
-
"text": [
|
56 |
-
"Text Value: None\n",
|
57 |
-
"Text Value: Legado: 2\n",
|
58 |
-
"\n",
|
59 |
-
"Text Value: Legado: 2\n",
|
60 |
-
"Finca Flichman: 4\n",
|
61 |
-
"\n"
|
62 |
-
]
|
63 |
}
|
64 |
],
|
65 |
"source": [
|
@@ -88,6 +76,7 @@
|
|
88 |
"server = app.server\n",
|
89 |
"\n",
|
90 |
"raw_wine_similarity_df = pd.read_csv('data/sogrape_wine.csv')\n",
|
|
|
91 |
"\n",
|
92 |
"wine_similarity_df = pd.read_csv('data/wine_similarity.csv')\n",
|
93 |
"wine_list = wine_similarity_df['NAME'].unique()\n",
|
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
+
"execution_count": 14,
|
6 |
"metadata": {},
|
7 |
"outputs": [
|
8 |
{
|
9 |
"name": "stderr",
|
10 |
"output_type": "stream",
|
11 |
"text": [
|
12 |
+
"/var/folders/b4/lwfgccm95kqd2skcwvrt2fr00000gn/T/ipykernel_289/3311244344.py:94: FutureWarning:\n",
|
13 |
"\n",
|
14 |
"Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n",
|
15 |
"\n"
|
|
|
30 |
" "
|
31 |
],
|
32 |
"text/plain": [
|
33 |
+
"<IPython.lib.display.IFrame at 0x2ab0afaf0>"
|
34 |
]
|
35 |
},
|
36 |
"metadata": {},
|
|
|
48 |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
49 |
"\n"
|
50 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
}
|
52 |
],
|
53 |
"source": [
|
|
|
76 |
"server = app.server\n",
|
77 |
"\n",
|
78 |
"raw_wine_similarity_df = pd.read_csv('data/sogrape_wine.csv')\n",
|
79 |
+
"raw_wine_similarity_df = raw_wine_similarity_df.iloc[:3, :]\n",
|
80 |
"\n",
|
81 |
"wine_similarity_df = pd.read_csv('data/wine_similarity.csv')\n",
|
82 |
"wine_list = wine_similarity_df['NAME'].unique()\n",
|