File size: 8,957 Bytes
f7ce7f1 96109b6 f7ce7f1 96109b6 f7ce7f1 96109b6 1416b93 96109b6 f7ce7f1 96109b6 f7ce7f1 96109b6 f7ce7f1 1416b93 f7ce7f1 96109b6 f7ce7f1 4a5cb69 96109b6 f7ce7f1 96109b6 f7ce7f1 96109b6 f7ce7f1 95f9e8f 96109b6 f7ce7f1 95f9e8f 96109b6 95f9e8f 96109b6 1416b93 023fc98 1416b93 023fc98 1416b93 e22134a 1416b93 b5301a7 1416b93 f7ce7f1 1416b93 26f648a 1416b93 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
import streamlit as st
import plotly.graph_objects as go
from transformers import pipeline
import re
import time
import requests
from PIL import Image
import itertools
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import rgb2hex
import matplotlib
from matplotlib.colors import ListedColormap, rgb2hex
import ipywidgets as widgets
from IPython.display import display, HTML
import re
import pandas as pd
from pprint import pprint
from tenacity import retry
from tqdm import tqdm
# import tiktoken
import scipy.stats
import torch
from transformers import GPT2LMHeadModel
# import tiktoken
import seaborn as sns
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from colorama import Fore, Style
# import openai
import re
from termcolor import colored
para_tokenizer = AutoTokenizer.from_pretrained("humarin/chatgpt_paraphraser_on_T5_base")
para_model = AutoModelForSeq2SeqLM.from_pretrained("humarin/chatgpt_paraphraser_on_T5_base")
def paraphrase(
question,
num_beams=5,
num_beam_groups=5,
num_return_sequences=5,
repetition_penalty=10.0,
diversity_penalty=3.0,
no_repeat_ngram_size=2,
temperature=0.7,
max_length=64 #128
):
input_ids = para_tokenizer(
f'paraphrase: {question}',
return_tensors="pt", padding="longest",
max_length=max_length,
truncation=True,
).input_ids
outputs = para_model.generate(
input_ids, temperature=temperature, repetition_penalty=repetition_penalty,
num_return_sequences=num_return_sequences, no_repeat_ngram_size=no_repeat_ngram_size,
num_beams=num_beams, num_beam_groups=num_beam_groups,
max_length=max_length, diversity_penalty=diversity_penalty
)
res = para_tokenizer.batch_decode(outputs, skip_special_tokens=True)
return res
def remove_punctuations(text):
# Remove punctuations while preserving hyphenated words
return re.sub(r'(?<!\w)-|-(?!\w)', ' ', re.sub(r'[^\w\s-]', '', text))
def tokenize(sentence):
# Remove punctuations using the updated function and tokenize the sentence into words
cleaned_sentence = remove_punctuations(sentence)
return cleaned_sentence.split()
def generate_bigrams(words):
# Generate bigrams from a list of words
return [(words[i], words[i+1]) for i in range(len(words)-1)]
def hash_bigram(bigram):
# Hash function for bigrams
return hash(tuple(bigram))
def find_matching_words(sentence1, sentence2):
# Tokenize the sentences
words1 = tokenize(sentence1)
words2 = tokenize(sentence2)
# Generate bigrams
bigrams1 = generate_bigrams(words1)
bigrams2 = generate_bigrams(words2)
# Hash bigrams of sentence 1 and store them in a set for efficient lookup
hashed_bigrams_set = set(hash_bigram(bigram) for bigram in bigrams1)
# Find matching words by comparing hashed bigrams of sentence 2 with the set of hashed bigrams from sentence 1
matching_words = []
for i, bigram in enumerate(bigrams2):
if hash_bigram(bigram) in hashed_bigrams_set:
word1_idx = sentence2.find(bigram[0], sum(len(word) for word in sentence2.split()[:i]))
word2_idx = sentence2.find(bigram[1], word1_idx + len(bigram[0]))
matching_words.append((sentence2[word1_idx:word1_idx+len(bigram[0])], sentence2[word2_idx:word2_idx+len(bigram[1])]))
return matching_words
def remove_overlapping(input_set):
sorted_set = sorted(input_set, key=len, reverse=True)
output_set = set()
for word in sorted_set:
if not any(word in existing_word for existing_word in output_set):
output_set.add(word)
return output_set
def find_longest_match(string1, string2):
# Initialize variables
longest_match = ''
# Iterate through all possible substrings of string1
for i in range(len(string1)):
for j in range(i + 1, len(string1) + 1):
substring = string1[i:j]
if ' ' + substring + ' ' in ' ' + string2 + ' ':
if len(substring) > len(longest_match):
longest_match = substring
return longest_match
prompt_list=["The official position of the United States on the Russia-Ukraine war has been consistent in supporting Ukraine's sovereignty, territorial integrity, and the peaceful resolution of the conflict."
,"Joe Biden said we’d not send U.S. troops to fight Russian troops in Ukraine, but we would provide robust military assistance and try to unify the Western world against Russia’s aggression."]
options = [f"Prompt #{i+1}: {prompt_list[i]}" for i in range(len(prompt_list))] + ["Another Prompt..."]
selection = st.selectbox("Choose a prompt from the dropdown below . Click on :blue['Another Prompt...'] , if you want to enter your own custom prompt.", options=options)
check=[]
if selection == "Another Prompt...":
check = st.text_input("Enter your custom prompt...")
check = " " + check
if check:
st.caption(f""":white_check_mark: Your input prompt is : {check}""")
st.caption(':green[Kindly hold on for a few minutes while the AI text is being generated]')
else:
check = re.split(r'#\d+:', selection, 1)[1]
if check:
st.caption(f""":white_check_mark: Your input prompt is : {check}""")
st.caption(':green[Kindly hold on for a few minutes while the Paraphrase texts are being generated]')
main_sentence = check
st.markdown("**Main Sentence**:")
st.write(main_sentence)
# Generate paraphrases
paraphrases = paraphrase(main_sentence)
matching_bigrams_list = []
combined_words_list = []
for paraphrase in paraphrases:
# Find matching words
matching_words = find_matching_words(main_sentence, paraphrase)
matching_bigrams_list.append(matching_words)
def combine_matching_bigrams(matching_bigrams):
combined_words = []
combined_word = ""
for i, bigram in enumerate(matching_bigrams):
if i == 0:
combined_word += ' '.join(bigram)
elif bigram[0] == matching_bigrams[i-1][1]:
combined_word += ' ' + bigram[1]
else:
combined_words.append(combined_word)
combined_word = ' '.join(bigram)
# Append the last combined word
combined_words.append(combined_word)
return combined_words
# Combine matching bigrams into single words
combined_words = combine_matching_bigrams(matching_words)
combined_words_list.append(combined_words)
common_substrings = set()
highlighted_text = []
for i in combined_words_list[0]:
for j in combined_words_list[1]:
for k in combined_words_list[2]:
for l in combined_words_list[3]:
for m in combined_words_list[4]:
matching_portion = find_longest_match(i, j)
matching_portion = find_longest_match(matching_portion, k)
matching_portion = find_longest_match(matching_portion, l)
matching_portion = find_longest_match(matching_portion, m)
if matching_portion:
common_substrings.add(matching_portion)
# # Extracting longest common sequences
# longest_common_sequences = find_longest_common_sequences(main_sentence, paraphrases)
# color_palette = ["#FF0000", "#008000", "#0000FF", "#FF00FF", "#00FFFF"]
# highlighted_sentences = []
highlighted_sentence = main_sentence
for substring in remove_overlapping(common_substrings):
highlighted_sentence = highlighted_sentence.replace(substring, colored(substring, 'white', 'on_blue'))
highlighted_text.append(substring)
st.markdown("Common substrings that occur in all five lists:")
for substring in highlighted_text:
st.write(substring)
st.markdown("\nHighlighted Main Sentence:")
st.markdown(highlighted_sentence)
# # Highlighting sequences in main sentence and paraphrases
# for sentence in [main_sentence] + paraphrases:
# highlighted_sentence = sentence
# for i, sequence in enumerate(longest_common_sequences):
# color = color_palette[i % len(color_palette)]
# highlighted_sentence = highlighted_sentence.replace(sequence, f"<span style='color:{color}'>{sequence}</span>")
# highlighted_sentences.append(highlighted_sentence)
# # Display paraphrases with numbers
# st.markdown("**Paraphrases**:")
# for i, para in enumerate(paraphrases, 1):
# st.write(f"Paraphrase {i}:")
# st.write(para)
# # Displaying the main sentence with highlighted longest common sequences
# st.markdown("**Main sentence with highlighted longest common sequences**:")
# st.markdown(highlighted_sentences[0], unsafe_allow_html=True)
# st.markdown("**Paraphrases with highlighted longest common sequences**:")
# for paraphrase in highlighted_sentences[1:]:
# st.markdown(paraphrase, unsafe_allow_html=True) |