File size: 4,801 Bytes
f7ce7f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
import streamlit as st
import plotly.graph_objects as go
from transformers import pipeline
import re
import time
import requests
from PIL import Image
import itertools
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import rgb2hex
import matplotlib
from matplotlib.colors import ListedColormap, rgb2hex
import ipywidgets as widgets
from IPython.display import display, HTML
import re
import pandas as pd
from pprint import pprint
from tenacity import retry
from tqdm import tqdm
# import tiktoken
import scipy.stats
import torch
from transformers import GPT2LMHeadModel
# import tiktoken
import seaborn as sns
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from colorama import Fore, Style
# import openai
para_tokenizer = AutoTokenizer.from_pretrained("humarin/chatgpt_paraphraser_on_T5_base")
para_model = AutoModelForSeq2SeqLM.from_pretrained("humarin/chatgpt_paraphraser_on_T5_base")
def paraphrase(
question,
num_beams=5,
num_beam_groups=5,
num_return_sequences=5,
repetition_penalty=10.0,
diversity_penalty=3.0,
no_repeat_ngram_size=2,
temperature=0.7,
max_length=64 #128
):
input_ids = para_tokenizer(
f'paraphrase: {question}',
return_tensors="pt", padding="longest",
max_length=max_length,
truncation=True,
).input_ids
outputs = para_model.generate(
input_ids, temperature=temperature, repetition_penalty=repetition_penalty,
num_return_sequences=num_return_sequences, no_repeat_ngram_size=no_repeat_ngram_size,
num_beams=num_beams, num_beam_groups=num_beam_groups,
max_length=max_length, diversity_penalty=diversity_penalty
)
res = para_tokenizer.batch_decode(outputs, skip_special_tokens=True)
return res
def find_longest_common_sequences(main_sentence, paraphrases):
main_tokens = main_sentence.split()
common_sequences = set()
for paraphrase in paraphrases:
paraphrase_tokens = paraphrase.split()
for i in range(len(main_tokens)):
for j in range(len(paraphrase_tokens)):
# Start comparing pairs of words
m = i
n = j
while m < len(main_tokens) and n < len(paraphrase_tokens) and main_tokens[m] == paraphrase_tokens[n]:
m += 1
n += 1
# If we found a longer common sequence, update it
if m - i > 1:
sequence = ' '.join(main_tokens[i:m])
is_subsequence = any(sequence in existing_seq for existing_seq in common_sequences)
if not is_subsequence:
common_sequences.add(sequence)
return sorted(common_sequences, key=len, reverse=True)
# Extracting longest common sequences
longest_common_sequences = find_longest_common_sequences(main_sentence, paraphrases)
# Assigning colors to different sequences
color_palette = [Fore.RED, Fore.GREEN, Fore.BLUE, Fore.MAGENTA, Fore.CYAN]
highlighted_sentence = main_sentence
for i, sequence in enumerate(longest_common_sequences):
color = color_palette[i % len(color_palette)]
highlighted_sentence = highlighted_sentence.replace(sequence, f"{color}{sequence}{Style.RESET_ALL}")
prompt_list=["The official position of the United States on the Russia-Ukraine war has been consistent in supporting Ukraine's sovereignty, territorial integrity, and the peaceful resolution of the conflict."
]
options = [f"Prompt #{i+1}: {prompt_list[i]}" for i in range(3)] + ["Another Prompt..."]
selection = st.selectbox("Choose a prompt from the dropdown below . Click on :blue['Another Prompt...'] , if you want to enter your own custom prompt.", options=options)
check=[]
if selection == "Another Prompt...":
check = st.text_input("Enter your custom prompt...")
check = " " + check
if check:
st.caption(f""":white_check_mark: Your input prompt is : {check}""")
st.caption(':green[Kindly hold on for a few minutes while the AI text is being generated]')
else:
check = re.split(r'#\d+:', selection, 1)[1]
if check:
st.caption(f""":white_check_mark: Your input prompt is : {check}""")
st.caption(':green[Kindly hold on for a few minutes while the Paraphrase texts are being generated]')
main_sentence = check
st.write("Main Sentence:")
st.write(main_sentence)
# Generate paraphrases
paraphrases = paraphrase(main_sentence)
# Display paraphrases with numbers
st.write("Paraphrases:")
for i, para in enumerate(paraphrases, 1):
st.write(f"Paraphrase {i}:")
st.write(para)
# Displaying the main sentence with highlighted longest common sequences
st.text("Main sentence with highlighted longest common sequences:")
st.text(highlighted_sentence) |