File size: 7,789 Bytes
36f2167 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
import gradio as gr
import os
import nest_asyncio
import re
from pathlib import Path
import typing as t
import base64
from mimetypes import guess_type
from llama_parse import LlamaParse
from llama_index.core.schema import TextNode
from llama_index.core import VectorStoreIndex, StorageContext, load_index_from_storage, Settings
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.llms.openai import OpenAI
from llama_index.core.query_engine import CustomQueryEngine
from llama_index.multi_modal_llms.openai import OpenAIMultiModal
from llama_index.core.prompts import PromptTemplate
from llama_index.core.schema import ImageNode
from llama_index.core.base.response.schema import Response
from typing import Any, List, Optional
from llama_index.core.postprocessor.types import BaseNodePostprocessor
nest_asyncio.apply()
# Setting API keys
os.environ["OPENAI_API_KEY"] = os.getenv('OPENAI_API_KEY')
os.environ["LLAMA_CLOUD_API_KEY"] = os.getenv('LLAMA_CLOUD_API_KEY')
# Initialize the parser
parser = LlamaParse(
result_type="markdown",
parsing_instruction="You are given a medical textbook on medicine",
use_vendor_multimodal_model=True,
vendor_multimodal_model_name="gpt-4o-mini-2024-07-18",
show_progress=True,
verbose=True,
invalidate_cache=True,
do_not_cache=True,
num_workers=8,
language="en"
)
# Function to encode image to data URL
def local_image_to_data_url(image_path):
mime_type, _ = guess_type(image_path)
if mime_type is None:
mime_type = 'image/png'
with open(image_path, "rb") as image_file:
base64_encoded_data = base64.b64encode(image_file.read()).decode('utf-8')
return f"data:{mime_type};base64,{base64_encoded_data}"
# Function to get sorted image files
def get_page_number(file_name):
match = re.search(r"-page-(\d+)\.jpg$", str(file_name))
if match:
return int(match.group(1))
return 0
def _get_sorted_image_files(image_dir):
raw_files = [f for f in list(Path(image_dir).iterdir()) if f.is_file()]
sorted_files = sorted(raw_files, key=get_page_number)
return sorted_files
def get_text_nodes(md_json_objs, image_dir) -> t.List[TextNode]:
nodes = []
for result in md_json_objs:
json_dicts = result["pages"]
document_name = result["file_path"].split('/')[-1]
docs = [doc["md"] for doc in json_dicts]
image_files = _get_sorted_image_files(image_dir)
for idx, doc in enumerate(docs):
node = TextNode(
text=doc,
metadata={"image_path": str(image_files[idx]), "page_num": idx + 1, "document_name": document_name},
)
nodes.append(node)
return nodes
# Gradio interface functions
def upload_and_process_file(uploaded_file):
if uploaded_file is None:
return "Please upload a medical textbook (pdf)"
file_path = f"{uploaded_file.name}"
with open(file_path, "wb") as f:
f.write(uploaded_file.read())
md_json_objs = parser.get_json_result([file_path])
image_dicts = parser.get_images(md_json_objs, download_path="data_images")
return md_json_objs
def ask_question(md_json_objs, query_text, uploaded_query_image=None):
if not md_json_objs:
return "No knowledge base loaded. Please upload a file first."
text_nodes = get_text_nodes(md_json_objs, "data_images")
# Setup index and LLM
embed_model = OpenAIEmbedding(model="text-embedding-3-large")
llm = OpenAI("gpt-4o-mini-2024-07-18")
Settings.llm = llm
Settings.embed_model = embed_model
if not os.path.exists("storage_manuals"):
index = VectorStoreIndex(text_nodes, embed_model=embed_model)
index.storage_context.persist(persist_dir="./storage_manuals")
else:
ctx = StorageContext.from_defaults(persist_dir="./storage_manuals")
index = load_index_from_storage(ctx)
retriever = index.as_retriever()
# Encode query image if provided
encoded_image_url = None
if uploaded_query_image is not None:
query_image_path = f"{uploaded_query_image.name}"
with open(query_image_path, "wb") as img_file:
img_file.write(uploaded_query_image.read())
encoded_image_url = local_image_to_data_url(query_image_path)
# Setup query engine
QA_PROMPT_TMPL = """
You are a friendly medical chatbot designed to assist users by providing accurate and detailed responses to medical questions based on information from medical books.
### Context:
---------------------
{context_str}
---------------------
### Query Text:
{query_str}
### Query Image:
---------------------
{encoded_image_url}
---------------------
### Answer:
"""
QA_PROMPT = PromptTemplate(QA_PROMPT_TMPL)
gpt_4o_mm = OpenAIMultiModal(model="gpt-4o-mini-2024-07-18")
class MultimodalQueryEngine(CustomQueryEngine):
qa_prompt: PromptTemplate
retriever: BaseRetriever
multi_modal_llm: OpenAIMultiModal
node_postprocessors: Optional[List[BaseNodePostprocessor]]
def __init__(
self,
qa_prompt: PromptTemplate,
retriever: BaseRetriever,
multi_modal_llm: OpenAIMultiModal,
node_postprocessors: Optional[List[BaseNodePostprocessor]] = [],
):
super().__init__(
qa_prompt=qa_prompt,
retriever=retriever,
multi_modal_llm=multi_modal_llm,
node_postprocessors=node_postprocessors
)
def custom_query(self, query_str: str):
# retrieve most relevant nodes
nodes = self.retriever.retrieve(query_str)
# create image nodes from the image associated with those nodes
image_nodes = [
NodeWithScore(node=ImageNode(image_path=n.node.metadata["image_path"]))
for n in nodes
]
# create context string from parsed markdown text
ctx_str = "\n\n".join(
[r.node.get_content(metadata_mode=MetadataMode.LLM).strip() for r in nodes]
)
# prompt for the LLM
fmt_prompt = self.qa_prompt.format(
context_str=ctx_str, query_str=query_str, encoded_image_url=encoded_image_url
)
# use the multimodal LLM to interpret images and generate a response to the prompt
llm_response = self.multi_modal_llm.complete(
prompt=fmt_prompt,
image_documents=[image_node.node for image_node in image_nodes],
)
return Response(
response=str(llm_response),
source_nodes=nodes,
metadata={"text_nodes": nodes, "image_nodes": image_nodes},
)
query_engine = MultimodalQueryEngine(QA_PROMPT, retriever, gpt_4o_mm)
response = query_engine.custom_query(query_text)
return response.response
# Define Gradio interface
md_json_objs = []
def upload_wrapper(uploaded_file):
global md_json_objs
md_json_objs = upload_and_process_file(uploaded_file)
return "File successfully processed!"
iface = gr.Interface(
fn=ask_question,
inputs=[
gr.inputs.State(),
gr.inputs.Textbox(label="Enter your query:"),
gr.inputs.File(label="Upload a query image (if any):", optional=True)
],
outputs="text",
title="Medical Knowledge Base & Query System"
)
upload_iface = gr.Interface(
fn=upload_wrapper,
inputs=gr.inputs.File(label="Upload a medical textbook (pdf):"),
outputs="text",
title="Upload Knowledge Base"
)
app = gr.TabbedInterface([upload_iface, iface], ["Upload Knowledge Base", "Ask a Question"])
app.launch()
|