Towhidul commited on
Commit
b55e04d
·
1 Parent(s): ef556b4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -13
app.py CHANGED
@@ -57,20 +57,20 @@ if file is not None:
57
  img_reshaped = image_resize(df)
58
 
59
  # Get prediction
60
- pred = model.predict(img_reshaped[0])
61
  label = np.argmax(pred)
62
 
63
- label_map = {4: ('nv', ' melanocytic nevi'),
64
- 6: ('mel', 'melanoma'),
65
- 2: ('bkl', 'benign keratosis-like lesions'),
66
- 1: ('bcc' , ' basal cell carcinoma'),
67
- 5: ('vasc', 'pyogenic granulomas and hemorrhage'),
68
- 0: ('akiec', 'Actinic keratoses and intraepithelial carcinomae'),
69
- 3: ('df', 'dermatofibroma')}
70
-
71
- if label in label_map:
72
- label_name = label_map[label][0]
73
- full_name = label_map[label][1]
74
 
75
  # Display image and result
76
  col1, col2 = st.columns(2)
@@ -79,7 +79,8 @@ if file is not None:
79
  # st.image(image)
80
  with col2:
81
  st.header("Prediction")
82
- st.metric("Digit", full_name)
 
83
 
84
 
85
  # import streamlit as st
 
57
  img_reshaped = image_resize(df)
58
 
59
  # Get prediction
60
+ pred = model.predict(img_reshaped)
61
  label = np.argmax(pred)
62
 
63
+ # label_map = {4: ('nv', ' melanocytic nevi'),
64
+ # 6: ('mel', 'melanoma'),
65
+ # 2: ('bkl', 'benign keratosis-like lesions'),
66
+ # 1: ('bcc' , ' basal cell carcinoma'),
67
+ # 5: ('vasc', 'pyogenic granulomas and hemorrhage'),
68
+ # 0: ('akiec', 'Actinic keratoses and intraepithelial carcinomae'),
69
+ # 3: ('df', 'dermatofibroma')}
70
+
71
+ # if label in label_map:
72
+ # label_name = label_map[label][0]
73
+ # full_name = label_map[label][1]
74
 
75
  # Display image and result
76
  col1, col2 = st.columns(2)
 
79
  # st.image(image)
80
  with col2:
81
  st.header("Prediction")
82
+ st.write(label)
83
+ # st.metric("Digit", full_name)
84
 
85
 
86
  # import streamlit as st