Towhidul commited on
Commit
4a040df
·
verified ·
1 Parent(s): 1518ffb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -12
app.py CHANGED
@@ -25,8 +25,8 @@ tokenizer = AutoTokenizer.from_pretrained(model_name,use_fast=False)
25
  model = AutoModelForSequenceClassification.from_pretrained(model_name)
26
 
27
 
28
- premise = sentence1
29
- hypothesis = sentence2
30
  input = tokenizer(premise, hypothesis, truncation=True, return_tensors="pt")
31
  output = model(input["input_ids"].to(device)) # device = "cuda:0" or "cpu"
32
  prediction = torch.softmax(output["logits"][0], -1).tolist()
@@ -35,14 +35,10 @@ prediction = {name: round(float(pred) * 100, 1) for pred, name in zip(prediction
35
  print(prediction)
36
 
37
 
38
- from sentence_transformers import CrossEncoder
39
- model1 = CrossEncoder('cross-encoder/nli-deberta-v3-xsmall')
40
- scores1 = model1.predict([(sentence1, sentence2)])
41
-
42
- #Convert scores to labels
43
- label_mapping = ['contradiction', 'entailment', 'neutral']
44
- labels = [label_mapping[score_max] for score_max in scores1.argmax(axis=1)]
45
- labels
46
 
47
 
48
 
@@ -67,8 +63,8 @@ def extract_person_names(sentence):
67
 
68
  return person_names[0]
69
 
70
- person_name1 = extract_person_names(sentence1)
71
- person_name2 = extract_person_names(sentence2)
72
 
73
  st.write("Result:", prediction)
74
 
 
25
  model = AutoModelForSequenceClassification.from_pretrained(model_name)
26
 
27
 
28
+ premise = selected_sentence1
29
+ hypothesis = selected_sentence2
30
  input = tokenizer(premise, hypothesis, truncation=True, return_tensors="pt")
31
  output = model(input["input_ids"].to(device)) # device = "cuda:0" or "cpu"
32
  prediction = torch.softmax(output["logits"][0], -1).tolist()
 
35
  print(prediction)
36
 
37
 
38
+ from transformers import pipeline
39
+ pipe = pipeline("text-classification",model="sileod/deberta-v3-base-tasksource-nli")
40
+ labels=pipe([dict(text=selected_sentence1,
41
+ text_pair=selected_sentence2)])
 
 
 
 
42
 
43
 
44
 
 
63
 
64
  return person_names[0]
65
 
66
+ person_name1 = extract_person_names(selected_sentence1)
67
+ person_name2 = extract_person_names(selected_sentence2)
68
 
69
  st.write("Result:", prediction)
70