Update app.py
Browse files
app.py
CHANGED
@@ -32,8 +32,8 @@ input = tokenizer(premise, hypothesis, truncation=True, return_tensors="pt")
|
|
32 |
output = model(input["input_ids"].to(device)) # device = "cuda:0" or "cpu"
|
33 |
prediction = torch.softmax(output["logits"][0], -1).tolist()
|
34 |
label_names = ["support", "neutral", "refute"]
|
35 |
-
prediction = {name:
|
36 |
-
|
37 |
|
38 |
|
39 |
from transformers import pipeline
|
@@ -69,14 +69,16 @@ def extract_person_names(sentence):
|
|
69 |
person_name1 = extract_person_names(selected_sentence1)
|
70 |
person_name2 = extract_person_names(selected_sentence2)
|
71 |
|
72 |
-
st.write("Result:", prediction)
|
73 |
|
74 |
col1, col2 = st.columns(2)
|
75 |
|
76 |
with col1:
|
77 |
-
st.write("Without Factual Entailment
|
|
|
78 |
|
79 |
with col2:
|
80 |
-
st.write("Factual Entailment:"
|
|
|
|
|
81 |
st.write(f"{person_name1}::{person_name2}")
|
82 |
|
|
|
32 |
output = model(input["input_ids"].to(device)) # device = "cuda:0" or "cpu"
|
33 |
prediction = torch.softmax(output["logits"][0], -1).tolist()
|
34 |
label_names = ["support", "neutral", "refute"]
|
35 |
+
prediction = {name: float(pred) for pred, name in zip(prediction, label_names)}
|
36 |
+
highest_label = max(prediction, key=prediction.get)
|
37 |
|
38 |
|
39 |
from transformers import pipeline
|
|
|
69 |
person_name1 = extract_person_names(selected_sentence1)
|
70 |
person_name2 = extract_person_names(selected_sentence2)
|
71 |
|
|
|
72 |
|
73 |
col1, col2 = st.columns(2)
|
74 |
|
75 |
with col1:
|
76 |
+
st.write("Without Factual Entailment.")
|
77 |
+
st.write("Textual Entailment Model:\n",highest_label)
|
78 |
|
79 |
with col2:
|
80 |
+
st.write("With Factual Entailment:")
|
81 |
+
st.write("Textual Entailment Model:\n",labels)
|
82 |
+
st.write("Span Detection Model:\n")
|
83 |
st.write(f"{person_name1}::{person_name2}")
|
84 |
|