Lois_RAG / app.py
Trabis's picture
Update app.py
8fda28a verified
import gradio as gr
from langchain_mistralai.chat_models import ChatMistralAI
from langchain.prompts import ChatPromptTemplate
from langchain_deepseek import ChatDeepSeek
from langchain_google_genai import ChatGoogleGenerativeAI
import os
from pathlib import Path
import json
import faiss
import numpy as np
from langchain.schema import Document
import pickle
import re
import requests
from functools import lru_cache
import torch
from sentence_transformers import SentenceTransformer
from sentence_transformers.cross_encoder import CrossEncoder
import threading
from queue import Queue
import concurrent.futures
from typing import Generator, Tuple, Iterator
import time
class OptimizedRAGLoader:
def __init__(self,
docs_folder: str = "./docs",
splits_folder: str = "./splits",
index_folder: str = "./index"):
self.docs_folder = Path(docs_folder)
self.splits_folder = Path(splits_folder)
self.index_folder = Path(index_folder)
# Create folders if they don't exist
for folder in [self.splits_folder, self.index_folder]:
folder.mkdir(parents=True, exist_ok=True)
# File paths
self.splits_path = self.splits_folder / "splits.json"
self.index_path = self.index_folder / "faiss.index"
self.documents_path = self.index_folder / "documents.pkl"
# Initialize components
self.index = None
self.indexed_documents = None
# Initialize encoder model
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.encoder = SentenceTransformer("intfloat/multilingual-e5-large")
self.encoder.to(self.device)
self.reranker = model = CrossEncoder("cross-encoder/mmarco-mMiniLMv2-L12-H384-v1",trust_remote_code=True)
# Initialize thread pool
self.executor = concurrent.futures.ThreadPoolExecutor(max_workers=4)
# Initialize response cache
self.response_cache = {}
@lru_cache(maxsize=1000)
def encode(self, text: str):
"""Cached encoding function"""
with torch.no_grad():
embeddings = self.encoder.encode(
text,
convert_to_numpy=True,
normalize_embeddings=True
)
return embeddings
def batch_encode(self, texts: list):
"""Batch encoding for multiple texts"""
with torch.no_grad():
embeddings = self.encoder.encode(
texts,
batch_size=32,
convert_to_numpy=True,
normalize_embeddings=True,
show_progress_bar=False
)
return embeddings
def load_and_split_texts(self):
if self._splits_exist():
return self._load_existing_splits()
documents = []
futures = []
for file_path in self.docs_folder.glob("*.txt"):
future = self.executor.submit(self._process_file, file_path)
futures.append(future)
for future in concurrent.futures.as_completed(futures):
documents.extend(future.result())
self._save_splits(documents)
return documents
def _process_file(self, file_path):
with open(file_path, 'r', encoding='utf-8') as file:
text = file.read()
chunks = [s.strip() for s in re.split(r'(?<=[.!?])\s+', text) if s.strip()]
return [
Document(
page_content=chunk,
metadata={
'source': file_path.name,
'chunk_id': i,
'total_chunks': len(chunks)
}
)
for i, chunk in enumerate(chunks)
]
def load_index(self) -> bool:
"""
Charge l'index FAISS et les documents associés s'ils existent
Returns:
bool: True si l'index a été chargé, False sinon
"""
if not self._index_exists():
print("Aucun index trouvé.")
return False
print("Chargement de l'index existant...")
try:
# Charger l'index FAISS
self.index = faiss.read_index(str(self.index_path))
# Charger les documents associés
with open(self.documents_path, 'rb') as f:
self.indexed_documents = pickle.load(f)
print(f"Index chargé avec {self.index.ntotal} vecteurs")
return True
except Exception as e:
print(f"Erreur lors du chargement de l'index: {e}")
return False
def create_index(self, documents=None):
if documents is None:
documents = self.load_and_split_texts()
if not documents:
return False
texts = [doc.page_content for doc in documents]
embeddings = self.batch_encode(texts)
dimension = embeddings.shape[1]
self.index = faiss.IndexFlatL2(dimension)
if torch.cuda.is_available():
# Use GPU for FAISS if available
res = faiss.StandardGpuResources()
self.index = faiss.index_cpu_to_gpu(res, 0, self.index)
self.index.add(np.array(embeddings).astype('float32'))
self.indexed_documents = documents
# Save index and documents
cpu_index = faiss.index_gpu_to_cpu(self.index) if torch.cuda.is_available() else self.index
faiss.write_index(cpu_index, str(self.index_path))
with open(self.documents_path, 'wb') as f:
pickle.dump(documents, f)
return True
def _index_exists(self) -> bool:
"""Vérifie si l'index et les documents associés existent"""
return self.index_path.exists() and self.documents_path.exists()
def get_retriever(self, k: int = 10):
if self.index is None:
if not self.load_index():
if not self.create_index():
raise ValueError("Unable to load or create index")
def retriever_function(query: str) -> list:
# Check cache first
cache_key = f"{query}_{k}"
if cache_key in self.response_cache:
return self.response_cache[cache_key]
query_embedding = self.encode(query)
distances, indices = self.index.search(
np.array([query_embedding]).astype('float32'),
k
)
results = [
self.indexed_documents[idx]
for idx in indices[0]
if idx != -1
]
# Cache the results
self.response_cache[cache_key] = results
return results
return retriever_function
# # # Initialize components
# # mistral_api_key = os.getenv("mistral_api_key")
# # llm = ChatMistralAI(
# # model="mistral-large-latest",
# # mistral_api_key=mistral_api_key,
# # temperature=0.01,
# # streaming=True,
# # )
# # deepseek_api_key = os.getenv("DEEPSEEK_KEY")
# # llm = ChatDeepSeek(
# # model="deepseek-chat",
# # temperature=0,
# # api_key=deepseek_api_key,
# # streaming=True,
# # )
# gemini_api_key = os.getenv("GEMINI_KEY")
# llm = ChatGoogleGenerativeAI(
# model="gemini-1.5-pro",
# temperature=0,
# google_api_key=gemini_api_key,
# disable_streaming=True,
# )
# rag_loader = OptimizedRAGLoader()
# retriever = rag_loader.get_retriever(k=5) # Reduced k for faster retrieval
# # Cache for processed questions
# question_cache = {}
# prompt_template = ChatPromptTemplate.from_messages([
# ("system", """Vous êtes un assistant juridique expert qualifié. Analysez et répondez aux questions juridiques avec précision.
# PROCESSUS D'ANALYSE :
# 1. Analysez le contexte fourni : {context}
# 2. Utilisez la recherche web si la reponse n'existe pas dans le contexte
# 3. Privilégiez les sources officielles et la jurisprudence récente
# Question à traiter : {question}
# """),
# ("human", "{question}")
# ])
# # Modified process_question function to better work with tuples
# def process_question(question: str) -> Iterator[str]:
# if question in question_cache:
# response, docs = question_cache[question]
# sources = [doc.metadata.get("source") for doc in docs]
# sources = list(set([os.path.splitext(source)[0] for source in sources]))
# yield response + "\n\n\nالمصادر المحتملة :\n" + "\n".join(sources)
# return
# relevant_docs = retriever(question)
# # Reranking with cross-encoder
# context = [doc.page_content for doc in relevant_docs]
# text_pairs = [[question, text] for text in context]
# scores = rag_loader.reranker.predict(text_pairs)
# scored_docs = list(zip(scores, context, relevant_docs))
# scored_docs.sort(key=lambda x: x[0], reverse=True)
# reranked_docs = [d[2].page_content for d in scored_docs][:10]
# prompt = prompt_template.format_messages(
# context=reranked_docs,
# question=question
# )
# full_response = ""
# try:
# for chunk in llm.stream(prompt):
# if isinstance(chunk, str):
# current_chunk = chunk
# else:
# current_chunk = chunk.content
# full_response += current_chunk
# sources = [d[2].metadata['source'] for d in scored_docs][:10]
# sources = list(set([os.path.splitext(source)[0] for source in sources]))
# yield full_response + "\n\n\nالمصادر المحتملة :\n" + "\n".join(sources)
# question_cache[question] = (full_response, relevant_docs)
# except Exception as e:
# yield f"Erreur lors du traitement : {str(e)}"
# # Updated gradio_stream function for 'messages' format
# def gradio_stream(question: str, chat_history: list) -> Iterator[list]:
# # chat_history now contains the user message added by user_input
# # Add a placeholder for the assistant's response
# chat_history.append({"role": "assistant", "content": ""})
# try:
# # Stream the response using the existing process_question generator
# for partial_response in process_question(question):
# # Update the content of the last message (the assistant's placeholder)
# chat_history[-1]["content"] = partial_response
# yield chat_history # Yield the entire updated history list
# except Exception as e:
# # Update the assistant's message with the error
# chat_history[-1]["content"] = f"Erreur : {str(e)}"
# yield chat_history # Yield the history with the error message
# # Gradio interface
# with gr.Blocks(css=css) as demo:
# gr.Markdown("<h2 style='text-align: center !important;'>هذا تطبيق للاجابة على الأسئلة المتعلقة بالقوانين المغربية</h2>")
# with gr.Row():
# message = gr.Textbox(label="أدخل سؤالك", placeholder="اكتب سؤالك هنا", elem_id="question_input")
# with gr.Row():
# send = gr.Button("بحث", elem_id="search_button")
# with gr.Row():
# # No type parameter - use Gradio's default
# chatbot = gr.Chatbot(label="", type="messages") # Ajout de type="messages"
# # Updated user_input function for 'messages' format
# def user_input(user_message, chat_history):
# # chat_history is already a list of message dicts
# # Append the new user message
# return "", chat_history + [{"role": "user", "content": user_message}]
# send.click(user_input, [message, chatbot], [message, chatbot], queue=False)
# send.click(gradio_stream, [message, chatbot], chatbot)
# demo.launch(share=True)
from fastapi import FastAPI, Request, HTTPException
from fastapi.responses import StreamingResponse, HTMLResponse
from fastapi.staticfiles import StaticFiles
from langchain_google_genai import ChatGoogleGenerativeAI
import uvicorn
import asyncio
import os # Assurez-vous que 'os' est importé si vous l'utilisez pour les clés API, etc.
# --- Vos imports (Document, LLM, PromptTemplate, etc.) ---
# from langchain_google_genai import ChatGoogleGenerativeAI
# from langchain.prompts import ChatPromptTemplate
# ... autres imports nécessaires ...
# from your_rag_module import OptimizedRAGLoader # Assurez-vous que la classe est importable
# --- Variables globales (initialisées à None) ---
rag_loader = None
llm = None
retriever = None
prompt_template = None
initialization_error = None # Pour stocker une erreur d'initialisation
# --- Bloc d'initialisation robuste ---
print("--- Starting Application Initialization ---")
try:
# Initialisation du LLM
print("Initializing LLM...")
gemini_api_key = os.getenv("GEMINI_KEY")
if not gemini_api_key:
raise ValueError("GEMINI_KEY environment variable not set.")
llm = ChatGoogleGenerativeAI(
model="gemini-1.5-pro",
temperature=0.1,
google_api_key=gemini_api_key,
disable_streaming=True,
)
print("LLM Initialized.")
# Initialisation RAG Loader et Retriever
print("Initializing RAG Loader...")
# Assurez-vous que OptimizedRAGLoader est défini ou importé correctement
rag_loader = OptimizedRAGLoader() # Cette ligne peut échouer (chargement modèles/index)
print("RAG Loader Initialized. Getting Retriever...")
retriever = rag_loader.get_retriever(k=6) # Cette ligne dépend de rag_loader
# relevant_docs = retriever(question)
INSUFFICIENT_CONTEXT_FLAG = "CONTEXTE_INSUFFISANT"
print("Retriever Initialized.")
# Initialisation du Prompt Template
print("Initializing Prompt Template...")
prompt_template = ChatPromptTemplate.from_messages([
("system", f"Tu es un assistant juridique spécialisé dans le droit marocain. "
f"Évalue si tu peux répondre à la question de l'utilisateur EN UTILISANT UNIQUEMENT les documents suivants. "
f"Si oui, réponds en detail à la question et exploiter toutes les informations du contexte en ajoutant la source de l'information sans extension MD. "
f"repondre aux questions en divisant la reponse selon la source, chaque source a son propre titre et contenu. "
f"enlever les marques de markdown (##) et mettre le titre en gras à la place. "
f"Si non, réponds UNIQUEMENT avec le texte exact '{INSUFFICIENT_CONTEXT_FLAG}' et rien d'autre. "),
("human", "Question: {question}\n\nDocuments Fournis:\n{context}")
])
print("Prompt Template Initialized.")
print("--- Application Initialization Successful ---")
except Exception as e:
print(f"!!!!!!!!!! FATAL INITIALIZATION ERROR !!!!!!!!!!")
print(f"Error during startup: {e}")
import traceback
traceback.print_exc() # Affiche la trace complète de l'erreur dans les logs
initialization_error = str(e) # Stocke l'erreur pour l'API
# On laisse les variables globales à None si l'initialisation échoue
# --- FastAPI App ---
app = FastAPI()
# --- Fonction backend modifiée ---
# (get_llm_response_stream - Gardez la version précédente qui gère le streaming SSE)
# Assurez-vous qu'elle utilise les variables globales llm, retriever, prompt_template
async def get_llm_response_stream(question: str):
# *** Vérification cruciale au début de la fonction ***
if initialization_error:
yield f"data: Erreur critique lors de l'initialisation du serveur: {initialization_error}\n\n"
return
if not retriever or not llm or not prompt_template:
yield f"data: Erreur: Un ou plusieurs composants serveur (LLM, Retriever, Prompt) ne sont pas initialisés.\n\n"
return
# *** Fin de la vérification ***
print(f"API processing question: {question}")
try:
# Utilisation de la variable globale 'retriever'
relevant_docs = retriever(question)
# Crée une nouvelle liste formatted_docs où le contenu de chaque document est préfixé par sa source (extraite des métadonnées).
formatted_docs = []
for doc in relevant_docs:
source = doc.metadata.get("source", "Source inconnue") # Récupère la source, avec une valeur par défaut
new_page_content = f"Source: {source}\n\n{doc.page_content}"
# Créez un nouveau Document ou modifiez l'existant (créer un nouveau est plus sûr)
formatted_docs.append(Document(page_content=new_page_content, metadata=doc.metadata)) # Gardez les métadonnées originales si besoin ailleurs
context_str = [doc.page_content for doc in formatted_docs]
# ... (le reste de votre logique pour context, sources, llm.stream) ...
# context_str = "\n\n".join([f"المصدر: {doc.metadata.get('source', 'غير معروف')}\nالمحتوى: {doc.page_content}" for doc in relevant_docs]) if relevant_docs else "لا يوجد سياق"
# sources = sorted(list(set([os.path.splitext(doc.metadata.get("source", "غير معروف"))[0] for doc in relevant_docs]))) if relevant_docs else []
# sources_str = "\n\n\nالمصادر المحتملة التي تم الرجوع إليها:\n- " + "\n- ".join(sources) if sources else ""
if not relevant_docs:
# Gérer le cas où il n'y a pas de documents
yield f"data: لم أتمكن من العثور على معلومات ذات صلة في المستندات.\n\n"
# Optionnel: appeler le LLM sans contexte ou s'arrêter ici
return
# Utilisation de la variable globale 'prompt_template'
prompt = prompt_template.format_messages(context=context_str, question=question)
full_response = ""
# Utilisation de la variable globale 'llm'
stream = llm.stream(prompt)
for chunk in stream:
content = chunk.content if hasattr(chunk, 'content') else str(chunk)
if content:
formatted_chunk = content.replace('\n', '\ndata: ')
yield f"data: {formatted_chunk}\n\n" # Format SSE
full_response += content
yield "event: end\ndata: Stream finished\n\n"
except Exception as e:
print(f"Error during API LLM generation: {e}")
import traceback
traceback.print_exc() # Affiche l'erreur dans les logs serveur
yield f"data: حدث خطأ أثناء معالجة طلبك: {str(e)}\n\n"
yield "event: error\ndata: Stream error\n\n" # Signale une erreur au client
# --- Endpoint API ---
@app.post("/ask")
async def handle_ask(request: Request):
# Vérifie si l'initialisation globale a échoué dès le début
if initialization_error:
raise HTTPException(status_code=500, detail=f"Erreur d'initialisation serveur: {initialization_error}")
try:
data = await request.json()
question = data.get("question")
if not question:
raise HTTPException(status_code=400, detail="Question manquante dans la requête JSON")
# Retourne la réponse streamée
return StreamingResponse(get_llm_response_stream(question), media_type="text/event-stream")
except Exception as e:
print(f"Error in /ask endpoint: {e}")
raise HTTPException(status_code=500, detail=f"Erreur interne du serveur: {str(e)}")
# --- Servir les fichiers statiques (HTML/JS/CSS) ---
# Assurez-vous que le dossier 'static' existe et contient index.html, script.js, style.css
app.mount("/", StaticFiles(directory="static", html=True), name="static")
# --- Démarrage du serveur ---
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860)