File size: 12,275 Bytes
9f620cb 3cf7a11 9f620cb 3cf7a11 9f620cb 3cf7a11 9f620cb 3cf7a11 9f620cb 3cf7a11 9f620cb 3cf7a11 9f620cb 3cf7a11 9f620cb 3cf7a11 9f620cb 3cf7a11 9f620cb 3cf7a11 9f620cb 3dad413 3cf7a11 9f620cb 3cf7a11 9f620cb 089275b f5717d7 9f620cb 3cf7a11 9f620cb 3cf7a11 9f620cb 3cf7a11 9f620cb 3cf7a11 9f620cb 3cf7a11 9f620cb 3cf7a11 a70531f 3cf7a11 caa8ad3 3cf7a11 9f620cb 3cf7a11 77e13a3 9f620cb 3cf7a11 9f620cb 52b50a9 0022f8a 3cf7a11 0022f8a 3cf7a11 0022f8a 3cf7a11 0022f8a 3cf7a11 0022f8a df0e374 0022f8a df0e374 0022f8a df0e374 3cf7a11 df0e374 3cf7a11 df0e374 3cf7a11 df0e374 3cf7a11 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 |
import gradio as gr
from langchain_mistralai.chat_models import ChatMistralAI
from langchain.prompts import ChatPromptTemplate
import os
from pathlib import Path
import json
import faiss
import numpy as np
from langchain.schema import Document
import pickle
import re
import requests
from functools import lru_cache
import torch
from sentence_transformers import SentenceTransformer
import threading
from queue import Queue
import concurrent.futures
class OptimizedRAGLoader:
def __init__(self,
docs_folder: str = "./docs",
splits_folder: str = "./splits",
index_folder: str = "./index"):
self.docs_folder = Path(docs_folder)
self.splits_folder = Path(splits_folder)
self.index_folder = Path(index_folder)
# Create folders if they don't exist
for folder in [self.splits_folder, self.index_folder]:
folder.mkdir(parents=True, exist_ok=True)
# File paths
self.splits_path = self.splits_folder / "splits.json"
self.index_path = self.index_folder / "faiss.index"
self.documents_path = self.index_folder / "documents.pkl"
# Initialize components
self.index = None
self.indexed_documents = None
# Initialize encoder model
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.encoder = SentenceTransformer("intfloat/multilingual-e5-large")
self.encoder.to(self.device)
# Initialize thread pool
self.executor = concurrent.futures.ThreadPoolExecutor(max_workers=4)
# Initialize response cache
self.response_cache = {}
@lru_cache(maxsize=1000)
def encode(self, text: str):
"""Cached encoding function"""
with torch.no_grad():
embeddings = self.encoder.encode(
text,
convert_to_numpy=True,
normalize_embeddings=True
)
return embeddings
def batch_encode(self, texts: list):
"""Batch encoding for multiple texts"""
with torch.no_grad():
embeddings = self.encoder.encode(
texts,
batch_size=32,
convert_to_numpy=True,
normalize_embeddings=True,
show_progress_bar=False
)
return embeddings
def load_and_split_texts(self):
if self._splits_exist():
return self._load_existing_splits()
documents = []
futures = []
for file_path in self.docs_folder.glob("*.txt"):
future = self.executor.submit(self._process_file, file_path)
futures.append(future)
for future in concurrent.futures.as_completed(futures):
documents.extend(future.result())
self._save_splits(documents)
return documents
def _process_file(self, file_path):
with open(file_path, 'r', encoding='utf-8') as file:
text = file.read()
chunks = [s.strip() for s in re.split(r'(?<=[.!?])\s+', text) if s.strip()]
return [
Document(
page_content=chunk,
metadata={
'source': file_path.name,
'chunk_id': i,
'total_chunks': len(chunks)
}
)
for i, chunk in enumerate(chunks)
]
def load_index(self) -> bool:
"""
Charge l'index FAISS et les documents associés s'ils existent
Returns:
bool: True si l'index a été chargé, False sinon
"""
if not self._index_exists():
print("Aucun index trouvé.")
return False
print("Chargement de l'index existant...")
try:
# Charger l'index FAISS
self.index = faiss.read_index(str(self.index_path))
# Charger les documents associés
with open(self.documents_path, 'rb') as f:
self.indexed_documents = pickle.load(f)
print(f"Index chargé avec {self.index.ntotal} vecteurs")
return True
except Exception as e:
print(f"Erreur lors du chargement de l'index: {e}")
return False
def create_index(self, documents=None):
if documents is None:
documents = self.load_and_split_texts()
if not documents:
return False
texts = [doc.page_content for doc in documents]
embeddings = self.batch_encode(texts)
dimension = embeddings.shape[1]
self.index = faiss.IndexFlatL2(dimension)
if torch.cuda.is_available():
# Use GPU for FAISS if available
res = faiss.StandardGpuResources()
self.index = faiss.index_cpu_to_gpu(res, 0, self.index)
self.index.add(np.array(embeddings).astype('float32'))
self.indexed_documents = documents
# Save index and documents
cpu_index = faiss.index_gpu_to_cpu(self.index) if torch.cuda.is_available() else self.index
faiss.write_index(cpu_index, str(self.index_path))
with open(self.documents_path, 'wb') as f:
pickle.dump(documents, f)
return True
def _index_exists(self) -> bool:
"""Vérifie si l'index et les documents associés existent"""
return self.index_path.exists() and self.documents_path.exists()
def get_retriever(self, k: int = 5):
if self.index is None:
if not self.load_index():
if not self.create_index():
raise ValueError("Unable to load or create index")
def retriever_function(query: str) -> list:
# Check cache first
cache_key = f"{query}_{k}"
if cache_key in self.response_cache:
return self.response_cache[cache_key]
query_embedding = self.encode(query)
distances, indices = self.index.search(
np.array([query_embedding]).astype('float32'),
k
)
results = [
self.indexed_documents[idx]
for idx in indices[0]
if idx != -1
]
# Cache the results
self.response_cache[cache_key] = results
return results
return retriever_function
# Initialize components
mistral_api_key = os.getenv("mistral_api_key")
llm = ChatMistralAI(
model="mistral-large-latest",
mistral_api_key=mistral_api_key,
temperature=0.1 # Lower temperature for faster responses
)
rag_loader = OptimizedRAGLoader()
retriever = rag_loader.get_retriever(k=10) # Reduced k for faster retrieval
# Cache for processed questions
question_cache = {}
prompt_template = ChatPromptTemplate.from_messages([
("system", """أنت مساعد مفيد يجيب على الأسئلة باللغة العربية باستخدام المعلومات المقدمة.
استخدم المعلومات التالية للإجابة على السؤال:
{context}
إذا لم تكن المعلومات كافية للإجابة على السؤال بشكل كامل، قم بتوضيح ذلك.
أجب بشكل موجز ودقيق."""),
("human", "{question}")
])
# def process_question(question: str) -> tuple[str, str]:
# # Check cache first
# if question in question_cache:
# return question_cache[question]
# relevant_docs = retriever(question)
# context = "\n".join([doc.page_content for doc in relevant_docs])
# prompt = prompt_template.format_messages(
# context=context,
# question=question
# )
# response = llm(prompt)
# result = (response.content, context)
# # Cache the result
# question_cache[question] = result
# return result
# # Custom CSS for right-aligned text in textboxes
# custom_css = """
# .rtl-text {
# text-align: right !important;
# direction: rtl !important;
# }
# .rtl-text textarea {
# text-align: right !important;
# direction: rtl !important;
# }
# """
# # Gradio interface with queue
# with gr.Blocks(css=custom_css) as iface:
# with gr.Column():
# input_text = gr.Textbox(
# label="السؤال",
# placeholder="اكتب سؤالك هنا...",
# lines=2,
# elem_classes="rtl-text"
# )
# with gr.Row():
# answer_box = gr.Textbox(
# label="الإجابة",
# lines=4,
# elem_classes="rtl-text"
# )
# context_box = gr.Textbox(
# label="السياق المستخدم",
# lines=8,
# elem_classes="rtl-text"
# )
# submit_btn = gr.Button("إرسال")
# submit_btn.click(
# fn=process_question,
# inputs=input_text,
# outputs=[answer_box, context_box],
# api_name="predict"
# )
# if __name__ == "__main__":
# iface.launch(
# share=True,
# server_name="0.0.0.0",
# server_port=7860,
# max_threads=3, # Controls concurrency
# show_error=True
# )
def process_question(question: str):
"""
Process the question and yield the answer progressively.
"""
# Check cache first
if question in question_cache:
yield question_cache[question] # Retourne directement depuis le cache si disponible
relevant_docs = retriever(question)
context = "\n".join([doc.page_content for doc in relevant_docs])
prompt = prompt_template.format_messages(
context=context,
question=question
)
response = "" # Initialise la réponse
# Ici, nous supposons que 'llm.stream' est un générateur qui renvoie des chunks
for chunk in llm.stream(prompt): # suppose que llm.stream renvoie des chunks de réponse
if isinstance(chunk, str):
response += chunk # Accumulez la réponse si c'est déjà une chaîne
else:
response += chunk.content # Sinon, prenez le contenu du chunk (si chunk est un type d'objet spécifique)
yield response, context # Renvoie la réponse mise à jour et le contexte
# Mettez le résultat en cache à la fin
question_cache[question] = (response, context)
# Custom CSS for right-aligned text in textboxes
custom_css = """
.rtl-text {
text-align: right !important;
direction: rtl !important;
}
.rtl-text textarea {
text-align: right !important;
direction: rtl !important;
}
"""
# Gradio interface with queue
with gr.Blocks(css=custom_css) as iface:
with gr.Column():
input_text = gr.Textbox(
label="السؤال",
placeholder="اكتب سؤالك هنا...",
lines=2,
elem_classes="rtl-text"
)
with gr.Row():
answer_box = gr.Textbox(
label="الإجابة",
lines=4,
elem_classes="rtl-text"
)
context_box = gr.Textbox(
label="السياق المستخدم",
lines=8,
elem_classes="rtl-text"
)
submit_btn = gr.Button("إرسال")
submit_btn.click(
fn=process_question,
inputs=input_text,
outputs=[answer_box, context_box],
api_name="predict",
queue=True # Utiliser le système de queue pour un traitement asynchrone
)
if __name__ == "__main__":
iface.launch(
share=True,
server_name="0.0.0.0",
server_port=7860,
max_threads=3, # Controls concurrency
show_error=True
) |