File size: 19,926 Bytes
b4263ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
import torch
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score, ndcg_score
from typing import Dict, List, Tuple
import json
import os
from train_model import HybridMusicRecommender, MusicRecommenderDataset
from torch.utils.data import DataLoader
import logging
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import ParameterGrid, train_test_split

logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(levelname)s - %(message)s',
    handlers=[
        logging.FileHandler('model_evaluation.log'),
        logging.StreamHandler()
    ]
)
logger = logging.getLogger(__name__)

class ModelEvaluator:
    def __init__(self, model_path: str, test_data: pd.DataFrame, batch_size: int = 32):
        self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        self.model_path = model_path
        self.test_data = test_data
        self.batch_size = batch_size
        
        # Load model and config
        torch.serialization.add_safe_globals([LabelEncoder])
        self.checkpoint = torch.load(model_path, map_location=self.device, weights_only=False)
        self.config = self.checkpoint['config']
        self.encoders = self.checkpoint['encoders']
        
        # Initialize model
        self.model = self._initialize_model()
        self.test_loader = self._prepare_data()
        
        # Create metrics directory with absolute path
        self.metrics_dir = os.path.join(os.path.dirname(model_path), 'metrics')
        os.makedirs(self.metrics_dir, exist_ok=True)
        
    def _initialize_model(self, custom_config: Dict = None) -> HybridMusicRecommender:
        """Initialize and load the model from checkpoint."""
        # Use custom config if provided, otherwise use default
        config = custom_config if custom_config else self.config
        
        model = HybridMusicRecommender(
            num_users=len(self.encoders['user_encoder'].classes_),
            num_music=len(self.encoders['music_encoder'].classes_),
            num_artists=len(self.encoders['artist_encoder'].classes_),
            num_genres=len(self.encoders['genre_encoder'].classes_),
            num_numerical=12,
            embedding_dim=config['embedding_dim'],
            layers=config['hidden_layers'],
            dropout=config['dropout']
        )
        
        # Only load state dict if using default config
        if not custom_config:
            model.load_state_dict(self.checkpoint['model_state_dict'])
        
        model = model.to(self.device)
        model.eval()
        return model
    
    def _prepare_data(self) -> DataLoader:
        """Prepare test data loader using saved encoders."""
        # Create a custom dataset for test data with the saved encoders
        test_dataset = MusicRecommenderDataset(
            self.test_data, 
            mode='test',
            encoders=self.encoders
        )
        
        logger.info(f"Prepared test dataset with {len(self.test_data)} samples")
        return DataLoader(test_dataset, batch_size=self.batch_size, shuffle=False)
    
    def calculate_metrics(self) -> Dict[str, float]:
        """Calculate various performance metrics."""
        true_values = []
        predictions = []
        
        with torch.no_grad():
            for batch in self.test_loader:
                batch = {k: v.to(self.device) for k, v in batch.items()}
                pred = self.model(batch)
                true_values.extend(batch['playcount'].cpu().numpy())
                predictions.extend(pred.cpu().numpy())
        
        true_values = np.array(true_values)
        predictions = np.array(predictions)
        
        metrics = {
            'mse': float(mean_squared_error(true_values, predictions)),
            'rmse': float(np.sqrt(mean_squared_error(true_values, predictions))),
            'mae': float(mean_absolute_error(true_values, predictions)),
            'r2': float(r2_score(true_values, predictions))
        }
        
        # Calculate prediction distribution statistics
        metrics.update({
            'pred_mean': float(np.mean(predictions)),
            'pred_std': float(np.std(predictions)),
            'true_mean': float(np.mean(true_values)),
            'true_std': float(np.std(true_values))
        })
        
        return metrics
    
    def analyze_prediction_bias(self) -> Dict[str, float]:
        """Analyze prediction bias across different value ranges."""
        true_values = []
        predictions = []
        
        with torch.no_grad():
            for batch in self.test_loader:
                batch = {k: v.to(self.device) for k, v in batch.items()}
                pred = self.model(batch)
                true_values.extend(batch['playcount'].cpu().numpy())
                predictions.extend(pred.cpu().numpy())
        
        true_values = np.array(true_values)
        predictions = np.array(predictions)
        
        # Calculate bias for different value ranges
        percentiles = np.percentile(true_values, [25, 50, 75])
        ranges = [
            (float('-inf'), percentiles[0]),
            (percentiles[0], percentiles[1]),
            (percentiles[1], percentiles[2]),
            (percentiles[2], float('inf'))
        ]
        
        bias_analysis = {}
        for i, (low, high) in enumerate(ranges):
            mask = (true_values >= low) & (true_values < high)
            if np.any(mask):
                bias = np.mean(predictions[mask] - true_values[mask])
                bias_analysis[f'bias_range_{i+1}'] = float(bias)
        
        return bias_analysis
    
    def plot_prediction_distribution(self, save_dir: str = None):
        """Plot the distribution of predictions vs true values."""
        if save_dir is None:
            save_dir = self.metrics_dir
            
        true_values = []
        predictions = []
        
        with torch.no_grad():
            for batch in self.test_loader:
                batch = {k: v.to(self.device) for k, v in batch.items()}
                pred = self.model(batch)
                true_values.extend(batch['playcount'].cpu().numpy())
                predictions.extend(pred.cpu().numpy())
        
        true_values = np.array(true_values)
        predictions = np.array(predictions)
        
        # Create scatter plot
        plt.figure(figsize=(10, 6))
        plt.scatter(true_values, predictions, alpha=0.5)
        plt.plot([true_values.min(), true_values.max()], 
                [true_values.min(), true_values.max()], 
                'r--', lw=2)
        plt.xlabel('True Values')
        plt.ylabel('Predictions')
        plt.title('Prediction vs True Values')
        
        try:
            # Save plot with absolute path
            plot_path = os.path.join(save_dir, 'prediction_distribution.png')
            plt.savefig(plot_path)
            plt.close()
            logger.info(f"Saved prediction distribution plot to: {plot_path}")
        except Exception as e:
            logger.error(f"Error saving prediction distribution plot: {str(e)}")
            
    def plot_error_distribution(self, save_dir: str = None):
        """Plot the distribution of prediction errors."""
        if save_dir is None:
            save_dir = self.metrics_dir
            
        true_values = []
        predictions = []
        
        with torch.no_grad():
            for batch in self.test_loader:
                batch = {k: v.to(self.device) for k, v in batch.items()}
                pred = self.model(batch)
                true_values.extend(batch['playcount'].cpu().numpy())
                predictions.extend(pred.cpu().numpy())
        
        errors = np.array(predictions) - np.array(true_values)
        
        plt.figure(figsize=(10, 6))
        sns.histplot(errors, kde=True)
        plt.xlabel('Prediction Error')
        plt.ylabel('Count')
        plt.title('Distribution of Prediction Errors')
        
        try:
            plot_path = os.path.join(save_dir, 'error_distribution.png')
            plt.savefig(plot_path)
            plt.close()
            logger.info(f"Saved error distribution plot to: {plot_path}")
        except Exception as e:
            logger.error(f"Error saving error distribution plot: {str(e)}")
    
    def evaluate_top_k_recommendations(self, k: int = 10) -> Dict[str, float]:
        """Evaluate top-K recommendation metrics."""
        user_metrics = []
        
        # Group by user to evaluate per-user recommendations
        for user_id in self.test_data['user_id'].unique():
            user_mask = self.test_data['user_id'] == user_id
            user_data = self.test_data[user_mask]
            
            # Skip users with too few interactions
            if len(user_data) < k:
                continue
            
            user_dataset = MusicRecommenderDataset(
                user_data,
                mode='test',
                encoders=self.encoders
            )
            user_loader = DataLoader(user_dataset, batch_size=len(user_data), shuffle=False)
            
            with torch.no_grad():
                batch = next(iter(user_loader))
                batch = {k: v.to(self.device) for k, v in batch.items()}
                predictions = self.model(batch).cpu().numpy()
                true_values = batch['playcount'].cpu().numpy()
                
                # Normalize predictions and true values to [0, 1] range
                true_values = (true_values - true_values.min()) / (true_values.max() - true_values.min() + 1e-8)
                predictions = (predictions - predictions.min()) / (predictions.max() - predictions.min() + 1e-8)
                
                # Calculate metrics for this user
                top_k_pred_idx = np.argsort(predictions)[-k:][::-1]
                top_k_true_idx = np.argsort(true_values)[-k:][::-1]
                
                # Calculate NDCG
                dcg = self._calculate_dcg(true_values, top_k_pred_idx, k)
                idcg = self._calculate_dcg(true_values, top_k_true_idx, k)
                
                # Handle edge case where idcg is 0
                ndcg = dcg / idcg if idcg > 0 else 0.0
                
                # Calculate precision and recall
                relevant_items = set(top_k_true_idx)
                recommended_items = set(top_k_pred_idx)
                
                precision = len(relevant_items & recommended_items) / k
                recall = len(relevant_items & recommended_items) / len(relevant_items)
                
                user_metrics.append({
                    'ndcg': ndcg,
                    'precision': precision,
                    'recall': recall
                })
        
        # Average metrics across users
        avg_metrics = {
            'ndcg@10': float(np.mean([m['ndcg'] for m in user_metrics])),
            'precision@10': float(np.mean([m['precision'] for m in user_metrics])),
            'recall@10': float(np.mean([m['recall'] for m in user_metrics]))
        }
        
        return avg_metrics

    def _calculate_dcg(self, true_values: np.ndarray, indices: np.ndarray, k: int) -> float:
        """Helper method to calculate DCG with numerical stability."""
        relevance = true_values[indices[:k]]
        # Cap the relevance values to prevent overflow
        max_relevance = 10  # Set a reasonable maximum value
        relevance = np.clip(relevance, 0, max_relevance)
        
        # Use log2(rank + 1) directly instead of creating array
        gains = (2 ** relevance - 1) / np.log2(np.arange(2, len(relevance) + 2))
        return float(np.sum(gains))
    
    def evaluate_cold_start(self, min_interactions: int = 5) -> Dict[str, Dict[str, float]]:
        """
        Evaluate model performance on cold-start scenarios.
        
        Args:
            min_interactions: Minimum number of interactions to consider a user/item as non-cold
        
        Returns:
            Dictionary containing metrics for different cold-start scenarios
        """
        # Get all unique users and items
        all_users = self.test_data['user_id'].unique()
        all_items = self.test_data['music_id'].unique()
        
        # Count interactions per user and item
        user_counts = self.test_data['user_id'].value_counts()
        item_counts = self.test_data['music_id'].value_counts()
        
        # Identify cold users and items
        cold_users = set(user_counts[user_counts < min_interactions].index)
        cold_items = set(item_counts[item_counts < min_interactions].index)
        
        # Create masks for different scenarios
        cold_user_mask = self.test_data['user_id'].isin(cold_users)
        cold_item_mask = self.test_data['music_id'].isin(cold_items)
        cold_user_warm_item = cold_user_mask & ~cold_item_mask
        warm_user_cold_item = ~cold_user_mask & cold_item_mask
        cold_both = cold_user_mask & cold_item_mask
        warm_both = ~cold_user_mask & ~cold_item_mask
        
        scenarios = {
            'cold_user_warm_item': cold_user_warm_item,
            'warm_user_cold_item': warm_user_cold_item,
            'cold_both': cold_both,
            'warm_both': warm_both
        }
        
        results = {}
        for scenario_name, mask in scenarios.items():
            if not any(mask):
                logger.warning(f"No samples found for scenario: {scenario_name}")
                continue
                
            scenario_data = self.test_data[mask].copy()
            
            # Create a temporary dataset and dataloader for this scenario
            scenario_dataset = MusicRecommenderDataset(
                scenario_data,
                mode='test',
                encoders=self.encoders
            )
            
            scenario_loader = DataLoader(
                scenario_dataset,
                batch_size=self.batch_size,
                shuffle=False
            )
            
            # Collect predictions and true values
            true_values = []
            predictions = []
            
            with torch.no_grad():
                for batch in scenario_loader:
                    batch = {k: v.to(self.device) for k, v in batch.items()}
                    pred = self.model(batch)
                    true_values.extend(batch['playcount'].cpu().numpy())
                    predictions.extend(pred.cpu().numpy())
            
            true_values = np.array(true_values)
            predictions = np.array(predictions)
            
            # Calculate metrics
            metrics = {
                'count': len(true_values),
                'mse': float(mean_squared_error(true_values, predictions)),
                'rmse': float(np.sqrt(mean_squared_error(true_values, predictions))),
                'mae': float(mean_absolute_error(true_values, predictions)),
                'r2': float(r2_score(true_values, predictions)),
                'pred_mean': float(np.mean(predictions)),
                'pred_std': float(np.std(predictions)),
                'true_mean': float(np.mean(true_values)),
                'true_std': float(np.std(true_values))
            }
            
            results[scenario_name] = metrics
            
            # Log results for this scenario
            logger.info(f"\n{scenario_name} Metrics (n={metrics['count']}):")
            for metric, value in metrics.items():
                if metric != 'count':
                    logger.info(f"{metric}: {value:.4f}")
        
        return results
    
    def save_evaluation_results(self, save_dir: str = 'metrics'):
        """Run all evaluations and save results."""
        os.makedirs(save_dir, exist_ok=True)
        
        # Calculate all metrics
        results = {
            'basic_metrics': self.calculate_metrics(),
            'bias_analysis': self.analyze_prediction_bias(),
            'top_k_metrics': self.evaluate_top_k_recommendations(),
            'cold_start_metrics': self.evaluate_cold_start(min_interactions=5)
        }
        
        # Save results to JSON
        results_file = os.path.join(save_dir, 'evaluation_results.json')
        with open(results_file, 'w') as f:
            json.dump(results, f, indent=4)
        
        logger.info(f"Evaluation completed. Results saved to: {save_dir}")
        
        return results

    def tune_hyperparameters(self, param_grid: Dict[str, List], val_data: pd.DataFrame) -> Dict:
        """
        Tune hyperparameters using validation set.
        
        Args:
            param_grid: Dictionary of parameters to try
            val_data: Validation data
            
        Returns:
            Best parameters found
        """
        best_score = float('inf')
        best_params = None
        
        # Create validation dataset
        val_dataset = MusicRecommenderDataset(val_data, mode='test', encoders=self.encoders)
        val_loader = DataLoader(val_dataset, batch_size=self.batch_size, shuffle=False)
        
        # Try all parameter combinations
        for params in ParameterGrid(param_grid):
            # Create a new config with updated parameters
            current_config = self.config.copy()
            current_config.update(params)
            
            # Initialize model with current parameters
            self.model = self._initialize_model(custom_config=current_config)
            
            # Evaluate on validation set
            metrics = self.calculate_metrics()
            score = metrics['rmse']  # Use RMSE as scoring metric
            
            if score < best_score:
                best_score = score
                best_params = params
                logger.info(f"New best parameters found: {params} (RMSE: {score:.4f})")
        
        return best_params

def main():
    # Load test data and check for data compatibility
    ROOT_DIR = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
    test_path = os.path.join(ROOT_DIR, 'data', 'test_data.csv')
    model_path = os.path.join(ROOT_DIR, 'data_engineered_v3', 'rs_main_v2_refactored', 'checkpoints', 'best_model.pth')
    
    test_data = pd.read_csv(test_path)
    logger.info(f"Loaded test data with {len(test_data)} samples")
    
    # Split test data into validation and test
    val_data, test_data = train_test_split(test_data, test_size=0.5, random_state=42)
    
    try:
        # Initialize evaluator
        evaluator = ModelEvaluator(
            model_path=model_path,
            test_data=test_data,
            batch_size=32
        )
        
        # Tune hyperparameters
        param_grid = {
            'embedding_dim': [32, 64, 128],
            'dropout': [0.1, 0.2, 0.3],
            'hidden_layers': [[128, 64], [256, 128, 64], [512, 256, 128]]
        }
        
        best_params = evaluator.tune_hyperparameters(param_grid, val_data)
        logger.info(f"Best parameters: {best_params}")
        
        # Run evaluation
        results = evaluator.save_evaluation_results()
        
        # Print summary
        logger.info("\nEvaluation Summary:")
        logger.info("Basic Metrics:")
        for metric, value in results['basic_metrics'].items():
            logger.info(f"{metric}: {value:.4f}")
        
        logger.info("\nTop-K Metrics:")
        for metric, value in results['top_k_metrics'].items():
            logger.info(f"{metric}: {value:.4f}")
        
        logger.info("\nBias Analysis:")
        for range_name, bias in results['bias_analysis'].items():
            logger.info(f"{range_name}: {bias:.4f}")
        
    except Exception as e:
        logger.error(f"Error during evaluation: {str(e)}")
        raise

if __name__ == "__main__":
    main()