File size: 23,494 Bytes
b4263ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split, KFold
from sklearn.preprocessing import LabelEncoder, RobustScaler
import logging
from tqdm import tqdm
import os
from typing import Tuple, Dict, List
import json
from datetime import datetime
import torch.nn.functional as F
from sklearn.metrics import mean_squared_error, mean_absolute_error
import math
from encoder_utils import DataEncoder  # Add this import

# Set up logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(levelname)s - %(message)s',
    handlers=[
        logging.FileHandler('training.log'),
        logging.StreamHandler()
    ]
)
logger = logging.getLogger(__name__)

class MusicRecommenderDataset(Dataset):
    """Custom Dataset for loading music recommendation data with additional features."""
    
    def __init__(self, df: pd.DataFrame, mode: str = 'train', encoders=None, embedding_dims=None):
        self.df = df
        self.mode = mode
        self.embedding_dims = embedding_dims
        
        if encoders is not None:
            self.user_encoder = encoders['user_encoder']
            self.music_encoder = encoders['music_encoder']
            self.artist_encoder = encoders['artist_encoder']
            self.genre_encoder = encoders['genre_encoder']
            self.scaler = encoders['scaler']
            
            # Handle unknown values for each encoder
            def safe_transform(encoder, values, max_index=None, default_value=0):
                try:
                    transformed = encoder.transform(values)
                    if max_index is not None:
                        # Clip values to be within embedding range
                        transformed = np.clip(transformed, 0, max_index - 1)
                    logger.debug(f"Transformed shape: {transformed.shape}")
                    return transformed
                except Exception as e:
                    logger.warning(f"Error in transform: {str(e)}")
                    logger.warning(f"Using default value {default_value} for {len(values)} items")
                    return np.array([default_value] * len(values))
            
            # Transform with dimension limits
            max_dims = embedding_dims if embedding_dims else {}
            self.users = safe_transform(self.user_encoder, df['user_id'].values, 
                                      max_index=max_dims.get('num_users', None))
            self.music = safe_transform(self.music_encoder, df['music_id'].values, 
                                      max_index=max_dims.get('num_music', None))
            self.artists = safe_transform(self.artist_encoder, df['artist_id'].values, 
                                        max_index=max_dims.get('num_artists', None))
            self.genres = safe_transform(self.genre_encoder, df['main_genre'].values, 
                                       max_index=max_dims.get('num_genres', None))
            
            numerical_features = [
                'age', 'duration', 'acousticness', 'key', 'mode', 'speechiness',
                'instrumentalness', 'liveness', 'tempo', 'time_signature',
                'energy_loudness', 'dance_valence'
            ]
            
            # Handle numerical features
            try:
                self.numerical_features = self.scaler.transform(df[numerical_features].values)
            except KeyError as e:
                logger.warning(f"Missing numerical features: {str(e)}")
                self.numerical_features = np.zeros((len(df), len(numerical_features)))
            
            # Fix this part - Currently using numerical_features[11] which isn't playcount
            # Instead, use the actual playcount column
            self.playcount = df['playcount'].values  # Add this line
        else:
            raise ValueError("Encoders must be provided")

        # Binary features
        self.explicit = df['explicit'].astype(int).values
        self.gender = (df['gender'] == 'M').astype(int).values
        
        self.num_users = len(self.user_encoder.classes_)
        self.num_music = len(self.music_encoder.classes_)
        self.num_artists = len(self.artist_encoder.classes_)
        self.num_genres = len(self.genre_encoder.classes_)
        self.num_numerical = len(numerical_features)
        
    def __len__(self) -> int:
        return len(self.users)
    
    def __getitem__(self, idx: int) -> Dict[str, torch.Tensor]:
        return {
            'user_id': torch.tensor(self.users[idx], dtype=torch.long),
            'music_id': torch.tensor(self.music[idx], dtype=torch.long),
            'artist_id': torch.tensor(self.artists[idx], dtype=torch.long),
            'genre_id': torch.tensor(self.genres[idx], dtype=torch.long),
            'numerical_features': torch.tensor(self.numerical_features[idx], dtype=torch.float),
            'explicit': torch.tensor(self.explicit[idx], dtype=torch.float),
            'gender': torch.tensor(self.gender[idx], dtype=torch.float),
            'playcount': torch.tensor(self.playcount[idx], dtype=torch.float)  # Fix this line
        }

class HybridMusicRecommender(nn.Module):
    """Hybrid Neural Collaborative Filtering model with additional features."""
    
    def __init__(self, num_users: int, num_music: int, num_artists: int, 
                 num_genres: int, num_numerical: int, embedding_dim: int = 64,
                 layers: List[int] = [256, 128, 64], dropout: float = 0.2):
        super(HybridMusicRecommender, self).__init__()
        
        # Embedding layers with proper initialization
        self.user_embedding = nn.Embedding(num_users, embedding_dim)
        self.music_embedding = nn.Embedding(num_music, embedding_dim)
        self.artist_embedding = nn.Embedding(num_artists, embedding_dim)
        self.genre_embedding = nn.Embedding(num_genres, embedding_dim)
        
        # Feature processing layers with residual connections
        self.numerical_layer = nn.Sequential(
            nn.Linear(num_numerical, embedding_dim),
            nn.ReLU(),
            nn.BatchNorm1d(embedding_dim)
        )
        self.binary_layer = nn.Sequential(
            nn.Linear(2, embedding_dim),
            nn.ReLU(),
            nn.BatchNorm1d(embedding_dim)
        )
        
        # Calculate total input features
        total_features = embedding_dim * 6
        
        # MLP layers with residual connections
        self.fc_layers = nn.ModuleList()
        input_dim = total_features
        
        for layer_size in layers:
            self.fc_layers.append(nn.ModuleDict({
                'main': nn.Sequential(
                    nn.Linear(input_dim, layer_size),
                    nn.ReLU(),
                    nn.BatchNorm1d(layer_size),
                    nn.Dropout(dropout)
                ),
                'residual': nn.Linear(input_dim, layer_size) if input_dim != layer_size else None
            }))
            input_dim = layer_size
        
        self.final_layer = nn.Linear(layers[-1], 1)
        
        # Initialize weights
        self._init_weights()
        
    def _init_weights(self):
        """Initialize weights using Kaiming initialization for better gradient flow."""
        for module in self.modules():
            if isinstance(module, nn.Linear):
                nn.init.kaiming_normal_(module.weight, mode='fan_out', nonlinearity='relu')
                if module.bias is not None:
                    nn.init.zeros_(module.bias)
            elif isinstance(module, nn.Embedding):
                nn.init.normal_(module.weight, mean=0.0, std=0.02)
            elif isinstance(module, nn.BatchNorm1d):
                nn.init.ones_(module.weight)
                nn.init.zeros_(module.bias)
                
    def forward(self, batch: Dict[str, torch.Tensor]) -> torch.Tensor:
        # Input validation
        required_keys = ['user_id', 'music_id', 'artist_id', 'genre_id', 'numerical_features', 'explicit', 'gender']
        if not all(key in batch for key in required_keys):
            raise ValueError(f"Missing required keys in batch. Required: {required_keys}")
            
        # Get embeddings
        user_emb = self.user_embedding(batch['user_id'])
        music_emb = self.music_embedding(batch['music_id'])
        artist_emb = self.artist_embedding(batch['artist_id'])
        genre_emb = self.genre_embedding(batch['genre_id'])
        
        # Process numerical and binary features
        numerical_features = self.numerical_layer(batch['numerical_features'])
        binary_features = self.binary_layer(
            torch.stack([batch['explicit'], batch['gender']], dim=1)
        )
        
        # Combine all features
        x = torch.cat([
            user_emb, music_emb, artist_emb, genre_emb, 
            numerical_features, binary_features
        ], dim=1)
        
        # Pass through MLP layers with residual connections
        for layer in self.fc_layers:
            identity = x
            x = layer['main'](x)
            if layer['residual'] is not None:
                x = x + layer['residual'](identity)
            x = F.relu(x)
        
        return self.final_layer(x).squeeze()

def calculate_ndcg(predictions: torch.Tensor, targets: torch.Tensor, k: int = 10) -> float:
    """
    Calculate NDCG@K for rating predictions.
    For rating predictions, we consider higher predicted ratings as more relevant.
    """
    # Ensure inputs are on the same device
    device = predictions.device
    predictions = predictions.view(-1)  # Flatten predictions
    targets = targets.view(-1)  # Flatten targets
    
    # Sort predictions descending to get top K items
    _, indices = torch.sort(predictions, descending=True)
    indices = indices[:k]  # Get top K indices
    
    # Get corresponding target values
    pred_sorted = predictions[indices]
    target_sorted = targets[indices]
    
    # Calculate DCG
    pos = torch.arange(1, len(indices) + 1, device=device, dtype=torch.float32)
    dcg = (target_sorted / torch.log2(pos + 1)).sum()
    
    # Calculate IDCG
    ideal_target, _ = torch.sort(targets, descending=True)
    ideal_target = ideal_target[:k]
    idcg = (ideal_target / torch.log2(pos + 1)).sum()
    
    # Calculate NDCG, handling division by zero
    ndcg = dcg / (idcg + 1e-8)  # Add small epsilon to avoid division by zero
    return ndcg.item()

class Trainer:
    """Trainer class for the hybrid music recommender model."""
    
    def __init__(self, model: nn.Module, train_loader: DataLoader, 
                 val_loader: DataLoader, config: Dict, encoders):
        self.model = model
        self.train_loader = train_loader
        self.val_loader = val_loader
        self.config = config
        self.encoders = encoders
        
        self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        logger.info(f"Training on device: {self.device}")
        if torch.cuda.is_available():
            logger.info(f"CUDA Device: {torch.cuda.get_device_name(0)}")
            logger.info(f"CUDA Memory Allocated: {torch.cuda.memory_allocated(0) / 1e9:.2f} GB")
        self.model = self.model.to(self.device)
        
        self.criterion = nn.MSELoss()
        self.optimizer = optim.Adam(
            model.parameters(),
            lr=config['learning_rate'],
            weight_decay=config['weight_decay']
        )
        
        self.scheduler = optim.lr_scheduler.ReduceLROnPlateau(
            self.optimizer, mode='min', patience=5, factor=0.5, verbose=True
        )
        
        # Early stopping configuration
        self.early_stopping_patience = config.get('early_stopping_patience', 10)
        self.best_val_loss = float('inf')
        self.patience_counter = 0
        
        # Gradient clipping
        self.max_grad_norm = config.get('max_grad_norm', 1.0)
        
        # Create directories for metrics and checkpoints
        os.makedirs('metrics', exist_ok=True)
        os.makedirs('checkpoints', exist_ok=True)
        
        self.metrics_file = os.path.join('metrics', f'training_metrics_{datetime.now().strftime("%Y%m%d_%H%M%S")}.json')
        self.metrics_history = {
            'train_loss': [], 'train_rmse': [], 'train_mae': [], 'train_ndcg': [],
            'val_loss': [], 'val_rmse': [], 'val_mae': [], 'val_ndcg': [],
            'lr': []
        }
        
        # Add L1 regularization
        self.l1_lambda = config.get('l1_lambda', 1e-5)
        
    def calculate_l1_loss(self, model):
        """Calculate L1 regularization loss."""
        l1_loss = 0
        for param in model.parameters():
            l1_loss += torch.sum(torch.abs(param))
        return self.l1_lambda * l1_loss
        
    def calculate_metrics(self, predictions: torch.Tensor, targets: torch.Tensor) -> Dict[str, float]:
        """Calculate training metrics."""
        # Convert tensors to numpy for sklearn metrics
        predictions = predictions.cpu().numpy()
        targets = targets.cpu().numpy()
        
        # Calculate basic metrics
        mse = mean_squared_error(targets, predictions)
        rmse = math.sqrt(mse)
        mae = mean_absolute_error(targets)
        
        # Calculate NDCG using tensor inputs
        ndcg = calculate_ndcg(
            torch.tensor(predictions, device=self.device),
            torch.tensor(targets, device=self.device),
            k=10
        )
        
        return {
            'loss': mse,
            'rmse': rmse,
            'mae': mae,
            'ndcg': ndcg
        }
        
    def train_epoch(self) -> Dict[str, float]:
        """Train the model for one epoch."""
        self.model.train()
        total_metrics = {'loss': 0.0, 'rmse': 0.0, 'mae': 0.0, 'ndcg': 0.0}
        num_batches = len(self.train_loader)
        
        for batch in tqdm(self.train_loader, desc='Training'):
            batch = {k: v.to(self.device) for k, v in batch.items()}
            
            self.optimizer.zero_grad()
            predictions = self.model(batch)
            # Add L1 regularization to loss
            loss = self.criterion(predictions, batch['playcount'])
            l1_loss = self.calculate_l1_loss(self.model)
            total_loss = loss + l1_loss
            total_loss.backward()
            
            # Gradient clipping
            torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.max_grad_norm)
            
            self.optimizer.step()
            
            # Calculate metrics
            batch_metrics = self.calculate_metrics(predictions.detach(), batch['playcount'])
            for k, v in batch_metrics.items():
                total_metrics[k] += v
                
        # Average metrics
        avg_metrics = {k: v / num_batches for k, v in total_metrics.items()}
        return avg_metrics
        
    def validate(self) -> Dict[str, float]:
        """Validate the model."""
        self.model.eval()
        total_metrics = {'loss': 0.0, 'rmse': 0.0, 'mae': 0.0, 'ndcg': 0.0}
        num_batches = len(self.val_loader)
        
        with torch.no_grad():
            for batch in tqdm(self.val_loader, desc='Validating'):
                batch = {k: v.to(self.device) for k, v in batch.items()}
                predictions = self.model(batch)
                
                # Calculate metrics
                batch_metrics = self.calculate_metrics(predictions, batch['playcount'])
                for k, v in batch_metrics.items():
                    total_metrics[k] += v
                    
        # Average metrics
        avg_metrics = {k: v / num_batches for k, v in total_metrics.items()}
        return avg_metrics
        
    def save_checkpoint(self, epoch: int, metrics: Dict[str, float], is_best: bool = False):
        """Save model checkpoint."""
        checkpoint = {
            'epoch': epoch,
            'model_state_dict': self.model.state_dict(),
            'optimizer_state_dict': self.optimizer.state_dict(),
            'metrics': metrics,
            'config': self.config,
            'encoders': self.encoders
        }
        
        # Create directories if they don't exist
        os.makedirs('models', exist_ok=True)
        os.makedirs('checkpoints', exist_ok=True)
        
        # Save latest checkpoint
        checkpoint_path = os.path.join('checkpoints', 'latest_checkpoint.pt')
        torch.save(checkpoint, checkpoint_path)
        
        # Save best model if current model is best
        if is_best:
            best_model_path = os.path.join('checkpoints', 'best_model.pth')
            torch.save(checkpoint, best_model_path)
            logger.info(f"Saved best model to {best_model_path}")
            
    def train(self, num_epochs: int):
        """Train the model for specified number of epochs."""
        for epoch in range(num_epochs):
            logger.info(f"Epoch {epoch+1}/{num_epochs}")
            
            # Training
            train_metrics = self.train_epoch()
            logger.info(f"Training metrics: {train_metrics}")
            
            # Validation
            val_metrics = self.validate()
            logger.info(f"Validation metrics: {val_metrics}")
            
            # Update learning rate
            self.scheduler.step(val_metrics['loss'])
            
            # Update metrics history
            current_lr = float(self.optimizer.param_groups[0]['lr'])  # Convert to Python float
            self.metrics_history['train_loss'].append(float(train_metrics['loss']))
            self.metrics_history['train_rmse'].append(float(train_metrics['rmse']))
            self.metrics_history['train_mae'].append(float(train_metrics['mae']))
            self.metrics_history['train_ndcg'].append(float(train_metrics['ndcg']))
            self.metrics_history['val_loss'].append(float(val_metrics['loss']))
            self.metrics_history['val_rmse'].append(float(val_metrics['rmse']))
            self.metrics_history['val_mae'].append(float(val_metrics['mae']))
            self.metrics_history['val_ndcg'].append(float(val_metrics['ndcg']))
            self.metrics_history['lr'].append(current_lr)
            
            # Save metrics
            with open(self.metrics_file, 'w') as f:
                json.dump(self.metrics_history, f, indent=4)
            
            # Check if current model is best
            is_best = val_metrics['loss'] < self.best_val_loss
            if is_best:
                self.best_val_loss = val_metrics['loss']
                self.patience_counter = 0
            else:
                self.patience_counter += 1
            
            # Save checkpoint
            self.save_checkpoint(epoch, val_metrics, is_best)
            
            # Early stopping
            if self.patience_counter >= self.early_stopping_patience:
                logger.info(f"Early stopping triggered after {epoch+1} epochs")
                break
                
            logger.info("-" * 50)

def cross_validate(data: pd.DataFrame, config: Dict, n_splits: int = 5):
    """Perform k-fold cross-validation."""
    kf = KFold(n_splits=n_splits, shuffle=True, random_state=42)
    fold_metrics = []
    best_model_state = None
    best_val_score = float('inf')
    
    # Print CUDA availability
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    logger.info(f"Using device: {device}")
    if torch.cuda.is_available():
        logger.info(f"CUDA Device: {torch.cuda.get_device_name(0)}")
    
    # Initialize encoders once on full dataset
    encoder = DataEncoder()
    encoder.fit(data)
    encoders = encoder.get_encoders()
    
    for fold, (train_idx, val_idx) in enumerate(kf.split(data)):
        logger.info(f"Training fold {fold + 1}/{n_splits}")
        
        # Create datasets for this fold
        train_data = data.iloc[train_idx]
        val_data = data.iloc[val_idx]
        
        # Use the same encoders for both train and validation
        train_dataset = MusicRecommenderDataset(train_data, encoders=encoders)
        val_dataset = MusicRecommenderDataset(val_data, encoders=encoders)
        
        train_loader = DataLoader(train_dataset, batch_size=config['batch_size'], shuffle=True)
        val_loader = DataLoader(val_dataset, batch_size=config['batch_size'])
        
        # Initialize model with dimensions from the common encoder
        model = HybridMusicRecommender(
            num_users=len(encoders['user_encoder'].classes_),
            num_music=len(encoders['music_encoder'].classes_),
            num_artists=len(encoders['artist_encoder'].classes_),
            num_genres=len(encoders['genre_encoder'].classes_),
            num_numerical=12,
            embedding_dim=config['embedding_dim'],
            layers=config['hidden_layers'],
            dropout=config['dropout']
        )
        
        # Train model
        trainer = Trainer(model, train_loader, val_loader, config, encoders)
        trainer.train(config['epochs'])
        
        # Get final validation metrics
        val_metrics = trainer.validate()
        fold_metrics.append(trainer.metrics_history)
        
        # Update best model if this fold performed better
        if val_metrics['loss'] < best_val_score:
            best_val_score = val_metrics['loss']
            best_model_state = {
                'model_state_dict': model.state_dict(),
                'config': config,
                'encoders': encoders,
                'fold': fold + 1,
                'metrics': val_metrics
            }
            logger.info(f"New best model from fold {fold + 1}")
    
    # Save the best model across all folds
    if best_model_state is not None:
        best_model_path = os.path.join('checkpoints', 'best_model_cv.pth')
        os.makedirs('checkpoints', exist_ok=True)
        torch.save(best_model_state, best_model_path)
        logger.info(f"Saved best model from fold {best_model_state['fold']} to {best_model_path}")
    
    return fold_metrics

def main():
    # Configuration
    config = {
        'learning_rate': 0.001,
        'weight_decay': 1e-5,
        'epochs': 20,
        'batch_size': 32,
        'embedding_dim': 64,
        'model_dir': 'models',
        'hidden_layers': [256, 128, 64],
        'dropout': 0.3,
        'early_stopping_patience': 2,
        'max_grad_norm': 1.0,
        'l1_lambda': 1e-5,  # L1 regularization strength
        'n_splits': 5,      # Number of cross-validation folds
    }
    
    # Save configuration
    os.makedirs('config', exist_ok=True)
    with open('config/model_config.json', 'w') as f:
        json.dump(config, f, indent=4)
    
    # Load data and encoders
    train_data = pd.read_csv('../../data/train_data.csv')
    
    # Don't load existing encoders for cross-validation
    # Instead, let cross_validate create new encoders on the full dataset
    
    # Perform cross-validation
    fold_metrics = cross_validate(train_data, config)
    
    # Average metrics across folds
    avg_metrics = {
        'val_rmse': np.mean([m['val_rmse'][-1] for m in fold_metrics]),
        'val_ndcg': np.mean([m['val_ndcg'][-1] for m in fold_metrics])
    }
    
    logger.info(f"Cross-validation results:")
    for metric, value in avg_metrics.items():
        logger.info(f"{metric}: {value:.4f}")

if __name__ == "__main__":
    main()