Spaces:
Sleeping
Sleeping
Commit
·
70d8b6d
1
Parent(s):
8de17f5
mike code
Browse files- __pycache__/gpt.cpython-310.pyc +0 -0
- app.py +3 -1
- gpt.py +14 -2
- mike-code-15k.pth +3 -0
__pycache__/gpt.cpython-310.pyc
CHANGED
Binary files a/__pycache__/gpt.cpython-310.pyc and b/__pycache__/gpt.cpython-310.pyc differ
|
|
app.py
CHANGED
@@ -7,7 +7,9 @@ For information on how to customize the ChatInterface, peruse the gradio docs: h
|
|
7 |
demo = gr.Interface(fn=gpt.get_response, inputs=["textbox",
|
8 |
gr.Slider(0, 100, value=50, step=1),
|
9 |
gr.Slider(0.1, 2.0, value=1.0),
|
10 |
-
|
|
|
|
|
11 |
block_size: 512
|
12 |
n_layers: 12
|
13 |
n_heads: 12
|
|
|
7 |
demo = gr.Interface(fn=gpt.get_response, inputs=["textbox",
|
8 |
gr.Slider(0, 100, value=50, step=1),
|
9 |
gr.Slider(0.1, 2.0, value=1.0),
|
10 |
+
gr.Dropdown(
|
11 |
+
["mike-chat", "mike-code"], value="mike-chat"),
|
12 |
+
], outputs=gr.Markdown(line_breaks=True), title="Mike Chat", article="""Mike is the greatest AI ever created. It was trained for about 8 hrs on my pc using fineweb-edu and open orca datasets. While it hallucinates a lot, it seems to be about on par with other lms of its size (about 160M params). Model details:
|
13 |
block_size: 512
|
14 |
n_layers: 12
|
15 |
n_heads: 12
|
gpt.py
CHANGED
@@ -134,9 +134,21 @@ my_GPT = load_compiled_model_state_dict(my_GPT, 'latest_model_finetune.pth')
|
|
134 |
#my_GPT.load_state_dict(torch.load('latest_model_finetune.pth', map_location=torch.device('cpu')))
|
135 |
my_GPT.eval()
|
136 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
eot = enc._special_tokens['<|endoftext|>']
|
138 |
|
139 |
-
def get_response(in_text, top_k=50, temperature=1):
|
140 |
with torch.inference_mode():
|
141 |
prompt = "USER: " + in_text + "\nASSISTANT: "
|
142 |
input_tokens = enc.encode(prompt)
|
@@ -146,7 +158,7 @@ def get_response(in_text, top_k=50, temperature=1):
|
|
146 |
input_tokens = input_tokens[1:]
|
147 |
context_tensor = torch.tensor(input_tokens).view(1, -1).to(device)
|
148 |
|
149 |
-
logits, loss =
|
150 |
logits = logits[:, -1, :] / temperature
|
151 |
if top_k > 0:
|
152 |
# Remove all tokens with a probability less than the last token of the top-k
|
|
|
134 |
#my_GPT.load_state_dict(torch.load('latest_model_finetune.pth', map_location=torch.device('cpu')))
|
135 |
my_GPT.eval()
|
136 |
|
137 |
+
my_GPT_code = GPT(enc.n_vocab, block_size, n_layers, n_heads, d_model, dropout=0.1) #enc.n_vocab
|
138 |
+
my_GPT_code = my_GPT_code.to(device)
|
139 |
+
#my_GPT = torch.compile(my_GPT, mode='reduce-overhead')
|
140 |
+
my_GPT_code = load_compiled_model_state_dict(my_GPT_code, 'mike-code-15k.pth')
|
141 |
+
#my_GPT.load_state_dict(torch.load('latest_model_finetune.pth', map_location=torch.device('cpu')))
|
142 |
+
my_GPT_code.eval()
|
143 |
+
|
144 |
+
models = {
|
145 |
+
"mike-chat": my_GPT,
|
146 |
+
"mike-code": my_GPT_code
|
147 |
+
}
|
148 |
+
|
149 |
eot = enc._special_tokens['<|endoftext|>']
|
150 |
|
151 |
+
def get_response(in_text, top_k=50, temperature=1, model="mike-chat"):
|
152 |
with torch.inference_mode():
|
153 |
prompt = "USER: " + in_text + "\nASSISTANT: "
|
154 |
input_tokens = enc.encode(prompt)
|
|
|
158 |
input_tokens = input_tokens[1:]
|
159 |
context_tensor = torch.tensor(input_tokens).view(1, -1).to(device)
|
160 |
|
161 |
+
logits, loss = models[model](context_tensor)
|
162 |
logits = logits[:, -1, :] / temperature
|
163 |
if top_k > 0:
|
164 |
# Remove all tokens with a probability less than the last token of the top-k
|
mike-code-15k.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3a3f92898af4acb8f41a571e6a4f2b597b7cca1316120787f51cb8d11ba84977
|
3 |
+
size 650652710
|