Spaces:
Sleeping
Sleeping
Commit
·
a4e819a
1
Parent(s):
2769ffd
to the moon bois
Browse files- __pycache__/gpt.cpython-310.pyc +0 -0
- app.py +9 -5
- gpt.py +2 -16
__pycache__/gpt.cpython-310.pyc
CHANGED
Binary files a/__pycache__/gpt.cpython-310.pyc and b/__pycache__/gpt.cpython-310.pyc differ
|
|
app.py
CHANGED
@@ -1,14 +1,18 @@
|
|
1 |
import gradio as gr
|
2 |
import gpt
|
3 |
|
4 |
-
|
5 |
-
print(gpt.get_response("test"))
|
6 |
-
|
7 |
-
|
8 |
"""
|
9 |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
10 |
"""
|
11 |
-
demo = gr.Interface(fn=gpt.get_response, inputs="textbox",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
|
14 |
if __name__ == "__main__":
|
|
|
1 |
import gradio as gr
|
2 |
import gpt
|
3 |
|
|
|
|
|
|
|
|
|
4 |
"""
|
5 |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
6 |
"""
|
7 |
+
demo = gr.Interface(fn=gpt.get_response, inputs=["textbox",
|
8 |
+
gr.Slider(0, 100, value=50, step=1),
|
9 |
+
gr.Slider(0.1, 2.0, value=1.0),
|
10 |
+
], outputs="textbox", title="Mike Chat", article="""Mike is the greatest AI ever created. It was trained for about 8 hrs on my pc using fineweb-edu and open orca datasets. While it hallucinates a lot, it seems to be about on par with other lms of its size (about 160M params). Model details:
|
11 |
+
block_size: 512
|
12 |
+
n_layers: 12
|
13 |
+
n_heads: 12
|
14 |
+
d_model: 768
|
15 |
+
(Same as gpt-2 but without weight tying)""")
|
16 |
|
17 |
|
18 |
if __name__ == "__main__":
|
gpt.py
CHANGED
@@ -136,35 +136,21 @@ my_GPT.eval()
|
|
136 |
|
137 |
eot = enc._special_tokens['<|endoftext|>']
|
138 |
|
139 |
-
def get_response(in_text):
|
140 |
prompt = "USER: " + in_text + "\nASSISTANT: "
|
141 |
input_tokens = enc.encode(prompt)
|
142 |
output_tokens = enc.encode(prompt)
|
143 |
-
top_k = 50
|
144 |
-
top_p = 0
|
145 |
for x in range(block_size):
|
146 |
if len(input_tokens) > block_size:
|
147 |
input_tokens = input_tokens[1:]
|
148 |
context_tensor = torch.tensor(input_tokens).view(1, -1).to(device)
|
149 |
|
150 |
logits, loss = my_GPT(context_tensor)
|
151 |
-
logits = logits[:, -1, :]
|
152 |
if top_k > 0:
|
153 |
# Remove all tokens with a probability less than the last token of the top-k
|
154 |
indices_to_remove = logits < torch.topk(logits, top_k, dim=1)[0][..., -1, None]
|
155 |
logits[indices_to_remove] = float("-inf")
|
156 |
-
if top_p > 0.0:
|
157 |
-
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
158 |
-
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
|
159 |
-
|
160 |
-
# Remove tokens with cumulative probability above the threshold
|
161 |
-
sorted_indices_to_remove = cumulative_probs > top_p
|
162 |
-
# Shift the indices to the right to keep also the first token above the threshold
|
163 |
-
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
164 |
-
sorted_indices_to_remove[..., 0] = 0
|
165 |
-
|
166 |
-
indices_to_remove = sorted_indices[sorted_indices_to_remove]
|
167 |
-
logits[indices_to_remove] = float("-inf")
|
168 |
probs = F.softmax(logits, dim=-1)
|
169 |
result = torch.multinomial(probs, num_samples=1).item()
|
170 |
if result == eot:
|
|
|
136 |
|
137 |
eot = enc._special_tokens['<|endoftext|>']
|
138 |
|
139 |
+
def get_response(in_text, top_k=50, temperature=1):
|
140 |
prompt = "USER: " + in_text + "\nASSISTANT: "
|
141 |
input_tokens = enc.encode(prompt)
|
142 |
output_tokens = enc.encode(prompt)
|
|
|
|
|
143 |
for x in range(block_size):
|
144 |
if len(input_tokens) > block_size:
|
145 |
input_tokens = input_tokens[1:]
|
146 |
context_tensor = torch.tensor(input_tokens).view(1, -1).to(device)
|
147 |
|
148 |
logits, loss = my_GPT(context_tensor)
|
149 |
+
logits = logits[:, -1, :] / temperature
|
150 |
if top_k > 0:
|
151 |
# Remove all tokens with a probability less than the last token of the top-k
|
152 |
indices_to_remove = logits < torch.topk(logits, top_k, dim=1)[0][..., -1, None]
|
153 |
logits[indices_to_remove] = float("-inf")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
probs = F.softmax(logits, dim=-1)
|
155 |
result = torch.multinomial(probs, num_samples=1).item()
|
156 |
if result == eot:
|