Trickshotblaster commited on
Commit
a5c66e0
·
verified ·
1 Parent(s): 6d969d7

Upload gpt.py

Browse files
Files changed (1) hide show
  1. gpt.py +157 -0
gpt.py ADDED
@@ -0,0 +1,157 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+
5
+ import tiktoken
6
+ enc = tiktoken.get_encoding("gpt2")
7
+
8
+ device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
9
+
10
+ class MultiHeadAttention(nn.Module):
11
+ def __init__(self, d_model, n_heads):
12
+ super().__init__()
13
+ self.d_model = d_model
14
+ self.n_heads = n_heads
15
+ assert d_model % n_heads == 0, "d_model must be divisible by n_heads"
16
+ self.d_key = self.d_model // self.n_heads
17
+
18
+ self.wq = nn.Linear(d_model, d_model)
19
+ self.wk = nn.Linear(d_model, d_model)
20
+ self.wv = nn.Linear(d_model, d_model)
21
+
22
+ self.wo = nn.Linear(d_model, d_model)
23
+ def forward(self, ins, mask=None):
24
+ batch_size, seq_len, d_model = ins.size()
25
+ Q = self.wq(ins).view(batch_size, seq_len, self.n_heads, self.d_key).transpose(1, 2)
26
+ K = self.wk(ins).view(batch_size, seq_len, self.n_heads, self.d_key).transpose(1, 2)
27
+ V = self.wv(ins).view(batch_size, seq_len, self.n_heads, self.d_key).transpose(1, 2)
28
+
29
+ #scaled_dot_product = (Q @ K.transpose(2, 3)) / (self.d_model ** 0.5)
30
+
31
+ #if mask is not None:
32
+ #scaled_dot_product += mask
33
+
34
+ attn_scores = F.scaled_dot_product_attention(Q, K, V, is_causal=True, attn_mask=mask)
35
+ #F.softmax(scaled_dot_product, dim=-1) @ V
36
+ attn_scores = attn_scores.transpose(1, 2).contiguous().view(batch_size, seq_len, d_model)
37
+ return self.wo(attn_scores)
38
+
39
+ class MLP(nn.Module):
40
+ def __init__(self, in_size, hidden_size, out_size):
41
+ super().__init__()
42
+ self.l1 = nn.Linear(in_size, hidden_size)
43
+ self.l2 = nn.Linear(hidden_size, out_size)
44
+ self.gelu = nn.GELU()
45
+ def forward(self, ins):
46
+ acts = self.gelu(self.l1(ins))
47
+ return self.l2(acts)
48
+
49
+ class DecoderBlock(nn.Module):
50
+ def __init__(self, vocab_size, d_model, n_heads, dropout=0.1):
51
+ super().__init__()
52
+ self.d_model = d_model
53
+ self.n_heads = n_heads
54
+ self.dropout = nn.Dropout(dropout)
55
+ self.MHA = MultiHeadAttention(d_model, n_heads)
56
+ self.MLP = MLP(d_model, 4*d_model, d_model)
57
+ self.layernorm1 = nn.LayerNorm(d_model)
58
+ self.layernorm2 = nn.LayerNorm(d_model)
59
+ def forward(self, ins, mask=None):
60
+ ins = ins + self.MHA(self.layernorm1(ins), mask=mask)
61
+ ins = ins + self.MLP(self.layernorm2(ins))
62
+ return self.dropout(ins)
63
+
64
+ class GPT(nn.Module):
65
+ def __init__(self, vocab_size, block_size, n_layers=2, n_heads=4, d_model=64, dropout=0.1):
66
+ super().__init__()
67
+ self.vocab_size = vocab_size
68
+ self.block_size = block_size
69
+ self.n_layers = n_layers
70
+ self.n_heads = n_heads
71
+ self.d_model = d_model
72
+ self.dropout = dropout
73
+
74
+ self.token_embedding = nn.Embedding(vocab_size, d_model)
75
+ self.position_embedding = nn.Embedding(block_size, d_model)
76
+ self.decoder_stack = nn.ModuleList([
77
+ DecoderBlock(vocab_size, d_model, n_heads, dropout=dropout) for _ in range(n_layers)
78
+ ])
79
+ self.final_ln = nn.LayerNorm(d_model)
80
+ self.output_proj = nn.Linear(d_model, vocab_size, bias=False)
81
+ #self.token_embedding.weight = self.output_proj.weight
82
+ def forward(self, ins, targets=None):
83
+ B, T = ins.size()
84
+
85
+ x = self.token_embedding(ins.to(device))
86
+ input_indices = torch.arange(T).to(device)
87
+ x += self.position_embedding(input_indices)
88
+
89
+ #look_ahead_mask = torch.triu(
90
+ #torch.ones((T, T)), diagonal=1
91
+ #)
92
+ #look_ahead_mask.masked_fill_(look_ahead_mask == 1, float("-inf"))
93
+ #look_ahead_mask = look_ahead_mask.to(device)
94
+
95
+ for decoder in self.decoder_stack:
96
+ x = decoder(x) #mask=look_ahead_mask
97
+ x = self.final_ln(x)
98
+ logits = self.output_proj(x)
99
+ loss = None
100
+ if targets is not None:
101
+ targets = targets.to(device)
102
+ loss = F.cross_entropy(logits.view(-1, self.vocab_size), targets.view(-1))
103
+ return logits, loss
104
+
105
+
106
+ block_size = 512
107
+ n_layers = 12
108
+ n_heads = 12
109
+ d_model = 768
110
+
111
+ torch.set_float32_matmul_precision('high')
112
+
113
+ my_GPT = GPT(enc.n_vocab, block_size, n_layers, n_heads, d_model, dropout=0.1) #enc.n_vocab
114
+ my_GPT = my_GPT.to(device)
115
+ my_GPT = torch.compile(my_GPT)
116
+ my_GPT.load_state_dict(torch.load('latest_model_finetune.pth'))
117
+ my_GPT.eval()
118
+
119
+ eot = enc._special_tokens['<|endoftext|>']
120
+
121
+ def get_response(in_text):
122
+ prompt = "USER: " + in_text + "\nASSISTANT: "
123
+ input_tokens = enc.encode(prompt)
124
+ output_tokens = enc.encode(prompt)
125
+ top_k = 50
126
+ top_p = 0
127
+ for x in range(block_size):
128
+ if len(input_tokens) > block_size:
129
+ input_tokens = input_tokens[1:]
130
+ context_tensor = torch.tensor(input_tokens).view(1, -1).to(device)
131
+
132
+ logits, loss = my_GPT(context_tensor)
133
+ logits = logits[:, -1, :]
134
+ if top_k > 0:
135
+ # Remove all tokens with a probability less than the last token of the top-k
136
+ indices_to_remove = logits < torch.topk(logits, top_k, dim=1)[0][..., -1, None]
137
+ logits[indices_to_remove] = float("-inf")
138
+ if top_p > 0.0:
139
+ sorted_logits, sorted_indices = torch.sort(logits, descending=True)
140
+ cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
141
+
142
+ # Remove tokens with cumulative probability above the threshold
143
+ sorted_indices_to_remove = cumulative_probs > top_p
144
+ # Shift the indices to the right to keep also the first token above the threshold
145
+ sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
146
+ sorted_indices_to_remove[..., 0] = 0
147
+
148
+ indices_to_remove = sorted_indices[sorted_indices_to_remove]
149
+ logits[indices_to_remove] = float("-inf")
150
+ probs = F.softmax(logits, dim=-1)
151
+ result = torch.multinomial(probs, num_samples=1).item()
152
+ if result == eot:
153
+ break
154
+ input_tokens.append(result)
155
+ output_tokens.append(result)
156
+
157
+ return enc.decode(output_tokens)