File size: 7,986 Bytes
257d404
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a7f4ef
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import torch
import torch_redstone as rst
import transformers
import numpy as np
from torch import nn
from typing import Tuple, List, Union, Optional
from transformers import GPT2Tokenizer, GPT2LMHeadModel, GPT2Config
from huggingface_hub import hf_hub_download
from diffusers import StableUnCLIPImg2ImgPipeline

N = type(None)
V = np.array
ARRAY = np.ndarray
ARRAYS = Union[Tuple[ARRAY, ...], List[ARRAY]]
VS = Union[Tuple[V, ...], List[V]]
VN = Union[V, N]
VNS = Union[VS, N]
T = torch.Tensor
TS = Union[Tuple[T, ...], List[T]]
TN = Optional[T]
TNS = Union[Tuple[TN, ...], List[TN]]
TSN = Optional[TS]
TA = Union[T, ARRAY]


D = torch.device

class Wrapper(transformers.modeling_utils.PreTrainedModel):
    def __init__(self) -> None:
        super().__init__(transformers.configuration_utils.PretrainedConfig())
        self.param = torch.nn.Parameter(torch.tensor(0.))

    def forward(self, x):
        return rst.ObjectProxy(image_embeds=x)

class MLP(nn.Module):

    def forward(self, x: T) -> T:
        return self.model(x)

    def __init__(self, sizes: Tuple[int, ...], bias=True, act=nn.Tanh):
        super(MLP, self).__init__()
        layers = []
        for i in range(len(sizes) -1):
            layers.append(nn.Linear(sizes[i], sizes[i + 1], bias=bias))
            if i < len(sizes) - 2:
                layers.append(act())
        self.model = nn.Sequential(*layers)

class ClipCaptionModel(nn.Module):

    #@functools.lru_cache #FIXME
    def get_dummy_token(self, batch_size: int, device: D) -> T:
        return torch.zeros(batch_size, self.prefix_length, dtype=torch.int64, device=device)

    def forward(self, tokens: T, prefix: T, mask: Optional[T] = None, labels: Optional[T] = None):
        embedding_text = self.gpt.transformer.wte(tokens)
        prefix_projections = self.clip_project(prefix).view(-1, self.prefix_length, self.gpt_embedding_size)
        #print(embedding_text.size()) #torch.Size([5, 67, 768])
        #print(prefix_projections.size()) #torch.Size([5, 1, 768])
        embedding_cat = torch.cat((prefix_projections, embedding_text), dim=1)
        if labels is not None:
            dummy_token = self.get_dummy_token(tokens.shape[0], tokens.device)
            labels = torch.cat((dummy_token, tokens), dim=1)
        out = self.gpt(inputs_embeds=embedding_cat, labels=labels, attention_mask=mask)
        return out

    def __init__(self, prefix_length: int, prefix_size: int = 512):
        super(ClipCaptionModel, self).__init__()
        self.prefix_length = prefix_length
        self.gpt = GPT2LMHeadModel(GPT2Config.from_pretrained('gpt2'))
        self.gpt_embedding_size = self.gpt.transformer.wte.weight.shape[1]
        if prefix_length > 10:  # not enough memory
            self.clip_project = nn.Linear(prefix_size, self.gpt_embedding_size * prefix_length)
        else:
            self.clip_project = MLP((prefix_size, (self.gpt_embedding_size * prefix_length) // 2, self.gpt_embedding_size * prefix_length))

class ClipCaptionPrefix(ClipCaptionModel):

    def parameters(self, recurse: bool = True):
        return self.clip_project.parameters()

    def train(self, mode: bool = True):
        super(ClipCaptionPrefix, self).train(mode)
        self.gpt.eval()
        return self

def generate2(
    model,
    tokenizer,
    tokens=None,
    prompt=None,
    embed=None,
    entry_count=1,
    entry_length=67,  # maximum number of words
    top_p=0.8,
    temperature=1.,
    stop_token: str = '.',
):
    model.eval()
    generated_num = 0
    generated_list = []
    stop_token_index = tokenizer.encode(stop_token)[0]
    filter_value = -float("Inf")
    device = next(model.parameters()).device
    score_col = []
    with torch.no_grad():

        for entry_idx in range(entry_count):
            if embed is not None:
                generated = embed
            else:
                if tokens is None:
                    tokens = torch.tensor(tokenizer.encode(prompt))
                    tokens = tokens.unsqueeze(0).to(device)

                generated = model.gpt.transformer.wte(tokens)

            for i in range(entry_length):

                outputs = model.gpt(inputs_embeds=generated)
                logits = outputs.logits
                logits = logits[:, -1, :] / (temperature if temperature > 0 else 1.0)
                sorted_logits, sorted_indices = torch.sort(logits, descending=True)
                cumulative_probs = torch.cumsum(torch.softmax(sorted_logits, dim=-1), dim=-1)
                sorted_indices_to_remove = cumulative_probs > top_p
                sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[
                                                    ..., :-1
                                                    ].clone()
                sorted_indices_to_remove[..., 0] = 0

                indices_to_remove = sorted_indices[sorted_indices_to_remove]
                logits[:, indices_to_remove] = filter_value
                next_token = torch.argmax(torch.softmax(logits, dim=-1), -1).reshape(1, 1)
                score = torch.softmax(logits, dim=-1).reshape(-1)[next_token.item()].item()
                score_col.append(score)
                next_token_embed = model.gpt.transformer.wte(next_token)
                if tokens is None:
                    tokens = next_token
                else:
                    tokens = torch.cat((tokens, next_token), dim=1)
                generated = torch.cat((generated, next_token_embed), dim=1)
                if stop_token_index == next_token.item():
                    break

            output_list = list(tokens.squeeze(0).cpu().numpy())
            output_text = tokenizer.decode(output_list)
            generated_list.append(output_text)
    return generated_list[0]


@torch.no_grad()
def pc_to_text(pc_encoder: torch.nn.Module, pc, cond_scale):
    ref_dev = next(pc_encoder.parameters()).device
    prefix = pc_encoder(torch.tensor(pc.T[None], device=ref_dev))
    prefix = prefix.float() * cond_scale
    prefix = prefix.to(next(model.parameters()).device)
    prefix_embed = model.clip_project(prefix).reshape(1, prefix_length, -1)
    text = generate2(model, tokenizer, embed=prefix_embed)
    return text

@torch.no_grad()
def pc_to_image(pc_encoder: torch.nn.Module, pc, prompt, noise_level, width, height, cfg_scale, num_steps, callback):
    ref_dev = next(pc_encoder.parameters()).device
    enc = pc_encoder(torch.tensor(pc.T[None], device=ref_dev))
    enc = torch.nn.functional.normalize(enc, dim=-1) * (768 ** 0.5) / 2
    if torch.cuda.is_available():
        enc = enc.to('cuda:' + str(torch.cuda.current_device()))
    # enc = enc.type(half)
    # with torch.autocast("cuda"):
    return pipe(
        prompt=', '.join(["best quality"] + ([prompt] if prompt else [])),
        negative_prompt="cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry",
        image=enc,
        width=width, height=height,
        guidance_scale=cfg_scale,
        noise_level=noise_level,
        callback=callback,
        num_inference_steps=num_steps
    ).images[0]



pipe = StableUnCLIPImg2ImgPipeline.from_pretrained(
    "diffusers/stable-diffusion-2-1-unclip-i2i-l",
    # variant="fp16",
    image_encoder = Wrapper()
)
# pe = pipe.text_encoder.text_model.embeddings
# pe.position_ids = torch.arange(pe.position_ids.shape[-1]).expand((1, -1)).to(pe.position_ids)  # workaround
if torch.cuda.is_available():
    pipe = pipe.to('cuda:' + str(torch.cuda.current_device()))
    pipe.enable_model_cpu_offload(torch.cuda.current_device())
pipe.enable_attention_slicing()
pipe.enable_vae_slicing()

tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
prefix_length = 10
model = ClipCaptionModel(prefix_length)
# print(model.gpt_embedding_size)
model.load_state_dict(torch.load(hf_hub_download('OpenShape/clipcap-cc', 'conceptual_weights.pt'), map_location='cpu'))
model.eval()
if torch.cuda.is_available():
    model = model.cuda()