Spaces:
Running
Running
import streamlit as st | |
st.title("TripletMix Demo") | |
st.caption("For faster inference without waiting in queue, you may clone the space and run it yourself.") | |
prog = st.progress(0.0, "Idle") | |
tab_cls, tab_img, tab_text, tab_pc, tab_sd, tab_cap = st.tabs([ | |
"Classification", | |
"Retrieval w/ Image", | |
"Retrieval w/ Text", | |
"Retrieval w/ 3D", | |
"Image Generation", | |
"Captioning", | |
]) | |
def demo_classification(): | |
with st.form("clsform"): | |
#load_data = misc_utils.input_3d_shape('cls') | |
cats = st.text_input("Custom Categories (64 max, separated with comma)") | |
cats = [a.strip() for a in cats.split(',')] | |
if len(cats) > 64: | |
st.error('Maximum 64 custom categories supported in the demo') | |
return | |
lvis_run = st.form_submit_button("Run Classification on LVIS Categories") | |
custom_run = st.form_submit_button("Run Classification on Custom Categories") | |
def demo_captioning(): | |
with st.form("capform"): | |
cond_scale = st.slider('Conditioning Scale', 0.0, 4.0, 2.0, 0.1, key='capcondscl') | |
def demo_pc2img(): | |
with st.form("sdform"): | |
prompt = st.text_input("Prompt (Optional)", key='sdtprompt') | |
def demo_retrieval(): | |
with tab_pc: | |
k = st.slider("Shapes to Retrieve", 1, 100, 16, key='rpc') | |
with tab_img: | |
with st.form("rimgform"): | |
k = st.slider("Shapes to Retrieve", 1, 100, 16, key='rimage') | |
with tab_text: | |
with st.form("rtextform"): | |
k = st.slider("Shapes to Retrieve", 1, 100, 16, key='rtext') | |
text = st.text_input("Input Text", key="inputrtext") | |
try: | |
with tab_cls: | |
demo_classification() | |
with tab_cap: | |
demo_captioning() | |
with tab_sd: | |
demo_pc2img() | |
demo_retrieval() | |
except Exception: | |
import traceback | |
st.error(traceback.format_exc().replace("\n", " \n")) | |