winfred2027 commited on
Commit
711eaf6
·
verified ·
1 Parent(s): 257d404

Upload Minkowski.py

Browse files
Files changed (1) hide show
  1. openshape/Minkowski.py +261 -0
openshape/Minkowski.py ADDED
@@ -0,0 +1,261 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import MinkowskiEngine as ME
2
+ import torch.nn as nn
3
+ from MinkowskiEngine.modules.resnet_block import BasicBlock
4
+
5
+
6
+ class ResNetBase(nn.Module):
7
+ BLOCK = None
8
+ LAYERS = ()
9
+ INIT_DIM = 64
10
+ PLANES = (64, 128, 256, 512)
11
+
12
+ def __init__(self, in_channels, out_channels, D=3):
13
+ nn.Module.__init__(self)
14
+ self.D = D
15
+ assert self.BLOCK is not None
16
+
17
+ self.network_initialization(in_channels, out_channels, D)
18
+ self.weight_initialization()
19
+
20
+ def network_initialization(self, in_channels, out_channels, D):
21
+
22
+ self.inplanes = self.INIT_DIM
23
+ self.conv1 = nn.Sequential(
24
+ ME.MinkowskiConvolution(
25
+ in_channels, self.inplanes, kernel_size=3, stride=2, dimension=D
26
+ ),
27
+ ME.MinkowskiInstanceNorm(self.inplanes),
28
+ ME.MinkowskiReLU(inplace=True),
29
+ ME.MinkowskiMaxPooling(kernel_size=2, stride=2, dimension=D),
30
+ )
31
+
32
+ self.layer1 = self._make_layer(
33
+ self.BLOCK, self.PLANES[0], self.LAYERS[0], stride=2
34
+ )
35
+ self.layer2 = self._make_layer(
36
+ self.BLOCK, self.PLANES[1], self.LAYERS[1], stride=2
37
+ )
38
+ self.layer3 = self._make_layer(
39
+ self.BLOCK, self.PLANES[2], self.LAYERS[2], stride=2
40
+ )
41
+ self.layer4 = self._make_layer(
42
+ self.BLOCK, self.PLANES[3], self.LAYERS[3], stride=2
43
+ )
44
+
45
+ self.conv5 = nn.Sequential(
46
+ ME.MinkowskiDropout(),
47
+ ME.MinkowskiConvolution(
48
+ self.inplanes, self.inplanes, kernel_size=3, stride=3, dimension=D
49
+ ),
50
+ ME.MinkowskiInstanceNorm(self.inplanes),
51
+ ME.MinkowskiGELU(),
52
+ )
53
+
54
+ self.glob_pool = ME.MinkowskiGlobalMaxPooling()
55
+
56
+ self.final = ME.MinkowskiLinear(self.inplanes, out_channels, bias=True)
57
+
58
+ def weight_initialization(self):
59
+ for m in self.modules():
60
+ if isinstance(m, ME.MinkowskiConvolution):
61
+ ME.utils.kaiming_normal_(m.kernel, mode="fan_out", nonlinearity="relu")
62
+
63
+ if isinstance(m, ME.MinkowskiBatchNorm):
64
+ nn.init.constant_(m.bn.weight, 1)
65
+ nn.init.constant_(m.bn.bias, 0)
66
+
67
+ def _make_layer(self, block, planes, blocks, stride=1, dilation=1, bn_momentum=0.1):
68
+ downsample = None
69
+ if stride != 1 or self.inplanes != planes * block.expansion:
70
+ downsample = nn.Sequential(
71
+ ME.MinkowskiConvolution(
72
+ self.inplanes,
73
+ planes * block.expansion,
74
+ kernel_size=1,
75
+ stride=stride,
76
+ dimension=self.D,
77
+ ),
78
+ ME.MinkowskiBatchNorm(planes * block.expansion),
79
+ )
80
+ layers = []
81
+ layers.append(
82
+ block(
83
+ self.inplanes,
84
+ planes,
85
+ stride=stride,
86
+ dilation=dilation,
87
+ downsample=downsample,
88
+ dimension=self.D,
89
+ )
90
+ )
91
+ self.inplanes = planes * block.expansion
92
+ for i in range(1, blocks):
93
+ layers.append(
94
+ block(
95
+ self.inplanes, planes, stride=1, dilation=dilation, dimension=self.D
96
+ )
97
+ )
98
+
99
+ return nn.Sequential(*layers)
100
+
101
+ def forward(self, x: ME.SparseTensor):
102
+ x = self.conv1(x)
103
+ x = self.layer1(x)
104
+ x = self.layer2(x)
105
+ x = self.layer3(x)
106
+ x = self.layer4(x)
107
+ x = self.conv5(x)
108
+ x = self.glob_pool(x)
109
+ return self.final(x)
110
+
111
+
112
+ class MinkResNet(ResNetBase):
113
+ BLOCK = BasicBlock
114
+ DILATIONS = (1, 1, 1, 1, 1, 1, 1, 1)
115
+ LAYERS = (2, 2, 2, 2, 2, 2, 2, 2)
116
+ PLANES = (32, 64, 128, 256, 256, 128, 96, 96)
117
+ INIT_DIM = 32
118
+ OUT_TENSOR_STRIDE = 1
119
+
120
+ # To use the model, must call initialize_coords before forward pass.
121
+ # Once data is processed, call clear to reset the model before calling
122
+ # initialize_coords
123
+ def __init__(self, D=3):
124
+ self.in_channels = 6
125
+ self.out_channels = 1280
126
+ self.embedding_channel = 1024
127
+ ResNetBase.__init__(self, self.in_channels, self.out_channels, D)
128
+
129
+ def get_conv_block(self, in_channel, out_channel, kernel_size, stride):
130
+ return nn.Sequential(
131
+ ME.MinkowskiConvolution(
132
+ in_channel,
133
+ out_channel,
134
+ kernel_size=kernel_size,
135
+ stride=stride,
136
+ dimension=self.D,
137
+ ),
138
+ ME.MinkowskiBatchNorm(out_channel),
139
+ ME.MinkowskiLeakyReLU(),
140
+ )
141
+
142
+ def get_mlp_block(self, in_channel, out_channel):
143
+ return nn.Sequential(
144
+ ME.MinkowskiLinear(in_channel, out_channel, bias=False),
145
+ ME.MinkowskiBatchNorm(out_channel),
146
+ ME.MinkowskiLeakyReLU(),
147
+ )
148
+
149
+ def network_initialization(self, in_channels, out_channels, D):
150
+ # Output of the first conv concated to conv6
151
+ self.inplanes = self.INIT_DIM
152
+ self.conv0p1s1 = ME.MinkowskiConvolution(
153
+ in_channels, self.inplanes, kernel_size=5, dimension=D)
154
+
155
+ self.bn0 = ME.MinkowskiBatchNorm(self.inplanes)
156
+
157
+ self.conv1p1s2 = ME.MinkowskiConvolution(
158
+ self.inplanes, self.inplanes, kernel_size=2, stride=2, dimension=D)
159
+ self.bn1 = ME.MinkowskiBatchNorm(self.inplanes)
160
+
161
+ self.block1 = self._make_layer(self.BLOCK, self.PLANES[0],
162
+ self.LAYERS[0])
163
+
164
+ self.conv2p2s2 = ME.MinkowskiConvolution(
165
+ self.inplanes, self.inplanes, kernel_size=2, stride=2, dimension=D)
166
+ self.bn2 = ME.MinkowskiBatchNorm(self.inplanes)
167
+
168
+ self.block2 = self._make_layer(self.BLOCK, self.PLANES[1],
169
+ self.LAYERS[1])
170
+
171
+ self.conv3p4s2 = ME.MinkowskiConvolution(
172
+ self.inplanes, self.inplanes, kernel_size=2, stride=2, dimension=D)
173
+
174
+ self.bn3 = ME.MinkowskiBatchNorm(self.inplanes)
175
+ self.block3 = self._make_layer(self.BLOCK, self.PLANES[2],
176
+ self.LAYERS[2])
177
+
178
+ self.conv4p8s2 = ME.MinkowskiConvolution(
179
+ self.inplanes, self.inplanes, kernel_size=2, stride=2, dimension=D)
180
+ self.bn4 = ME.MinkowskiBatchNorm(self.inplanes)
181
+ self.block4 = self._make_layer(self.BLOCK, self.PLANES[3],
182
+ self.LAYERS[3])
183
+
184
+ self.conv5 = nn.Sequential(
185
+ self.get_conv_block(
186
+ self.PLANES[0] + self.PLANES[1] + self.PLANES[2] + self.PLANES[3],
187
+ self.embedding_channel // 2,
188
+ kernel_size=3,
189
+ stride=2,
190
+ ),
191
+ self.get_conv_block(
192
+ self.embedding_channel // 2,
193
+ self.embedding_channel,
194
+ kernel_size=3,
195
+ stride=2,
196
+ ),
197
+ )
198
+
199
+ self.relu = ME.MinkowskiReLU(inplace=True)
200
+
201
+ self.global_max_pool = ME.MinkowskiGlobalMaxPooling()
202
+ self.global_avg_pool = ME.MinkowskiGlobalAvgPooling()
203
+
204
+ self.final = nn.Sequential(
205
+ self.get_mlp_block(self.embedding_channel * 2, 1024),
206
+ ME.MinkowskiDropout(),
207
+ self.get_mlp_block(1024, 1024),
208
+ ME.MinkowskiLinear(1024, out_channels, bias=True),
209
+ )
210
+
211
+ def forward(self, xyz, features, device="cuda", quantization_size=0.05):
212
+ xyz[:, 1:] = xyz[:, 1:] / quantization_size
213
+ #print(xyz.dtype, xyz, quantization_size)
214
+ x = ME.TensorField(
215
+ coordinates=xyz,
216
+ features=features,
217
+ device=device,
218
+ )
219
+
220
+ out = self.conv0p1s1(x.sparse())
221
+ out = self.bn0(out)
222
+ out_p1 = self.relu(out)
223
+
224
+ out = self.conv1p1s2(out_p1)
225
+ out = self.bn1(out)
226
+ out = self.relu(out)
227
+ out_b1p2 = self.block1(out)
228
+
229
+ out = self.conv2p2s2(out_b1p2)
230
+ out = self.bn2(out)
231
+ out = self.relu(out)
232
+ out_b2p4 = self.block2(out)
233
+
234
+ out = self.conv3p4s2(out_b2p4)
235
+ out = self.bn3(out)
236
+ out = self.relu(out)
237
+ out_b3p8 = self.block3(out)
238
+
239
+ # tensor_stride=16
240
+ out = self.conv4p8s2(out_b3p8)
241
+ out = self.bn4(out)
242
+ out = self.relu(out)
243
+ out = self.block4(out)
244
+
245
+
246
+ x1 = out_b1p2.slice(x)
247
+ x2 = out_b2p4.slice(x)
248
+ x3 = out_b3p8.slice(x)
249
+ x4 = out.slice(x)
250
+
251
+ x = ME.cat(x1, x2, x3, x4)
252
+
253
+ y = self.conv5(x.sparse())
254
+ x1 = self.global_max_pool(y)
255
+ x2 = self.global_avg_pool(y)
256
+
257
+ return self.final(ME.cat(x1, x2)).F
258
+
259
+
260
+ class MinkResNet34(MinkResNet):
261
+ LAYERS = (3, 4, 6, 3)