Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,33 +1,13 @@
|
|
1 |
import sys
|
2 |
import threading
|
3 |
import streamlit as st
|
4 |
-
from huggingface_hub import HfFolder, snapshot_download
|
5 |
-
|
6 |
-
|
7 |
-
@st.cache_data
|
8 |
-
def load_support():
|
9 |
-
if st.secrets.has_key('etoken'):
|
10 |
-
HfFolder().save_token(st.secrets['etoken'])
|
11 |
-
sys.path.append(snapshot_download("OpenShape/openshape-demo-support"))
|
12 |
-
|
13 |
-
|
14 |
-
# st.set_page_config(layout='wide')
|
15 |
-
load_support()
|
16 |
-
|
17 |
-
|
18 |
import numpy
|
19 |
import torch
|
20 |
import openshape
|
21 |
import transformers
|
22 |
from PIL import Image
|
23 |
-
|
24 |
-
|
25 |
-
def load_openshape(name, to_cpu=False):
|
26 |
-
pce = openshape.load_pc_encoder(name)
|
27 |
-
if to_cpu:
|
28 |
-
pce = pce.cpu()
|
29 |
-
return pce
|
30 |
-
|
31 |
|
32 |
@st.cache_resource
|
33 |
def load_openclip():
|
@@ -43,95 +23,48 @@ def load_openclip():
|
|
43 |
return clip_model, clip_prep
|
44 |
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
prog = st.progress(0.0, "Idle")
|
66 |
-
tab_cls, tab_img, tab_text, tab_pc, tab_sd, tab_cap = st.tabs([
|
67 |
-
"Classification",
|
68 |
-
"Retrieval w/ Image",
|
69 |
-
"Retrieval w/ Text",
|
70 |
-
"Retrieval w/ 3D",
|
71 |
-
"Image Generation",
|
72 |
-
"Captioning",
|
73 |
-
])
|
74 |
-
|
75 |
-
|
76 |
-
def sq(kc, vc):
|
77 |
-
st.session_state.state_queue.append((kc, vc))
|
78 |
-
|
79 |
-
|
80 |
-
def reset_3d_shape_input(key):
|
81 |
-
# this is not working due to streamlit problems, don't use it
|
82 |
-
model_key = key + "_model"
|
83 |
-
npy_key = key + "_npy"
|
84 |
-
swap_key = key + "_swap"
|
85 |
-
sq(model_key, None)
|
86 |
-
sq(npy_key, None)
|
87 |
-
sq(swap_key, "Y is up (for most Objaverse shapes)")
|
88 |
-
|
89 |
-
|
90 |
-
def auto_submit(key):
|
91 |
-
if st.session_state.get(key):
|
92 |
-
st.session_state[key] = False
|
93 |
-
return True
|
94 |
-
return False
|
95 |
-
|
96 |
-
|
97 |
-
def queue_auto_submit(key):
|
98 |
-
st.session_state[key] = True
|
99 |
-
st.experimental_rerun()
|
100 |
-
|
101 |
-
|
102 |
-
img_example_counter = 0
|
103 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
-
def image_examples(samples, ncols, return_key=None, example_text="Examples"):
|
106 |
-
global img_example_counter
|
107 |
-
trigger = False
|
108 |
-
with st.expander(example_text, True):
|
109 |
-
for i in range(len(samples) // ncols):
|
110 |
-
cols = st.columns(ncols)
|
111 |
-
for j in range(ncols):
|
112 |
-
idx = i * ncols + j
|
113 |
-
if idx >= len(samples):
|
114 |
-
continue
|
115 |
-
entry = samples[idx]
|
116 |
-
with cols[j]:
|
117 |
-
st.image(entry['dispi'])
|
118 |
-
img_example_counter += 1
|
119 |
-
with st.columns(5)[2]:
|
120 |
-
this_trigger = st.button('\+', key='imgexuse%d' % img_example_counter)
|
121 |
-
trigger = trigger or this_trigger
|
122 |
-
if this_trigger:
|
123 |
-
if return_key is None:
|
124 |
-
for k, v in entry.items():
|
125 |
-
if not k.startswith('disp'):
|
126 |
-
sq(k, v)
|
127 |
-
else:
|
128 |
-
trigger = entry[return_key]
|
129 |
-
return trigger
|
130 |
|
131 |
|
132 |
def demo_classification():
|
133 |
with st.form("clsform"):
|
134 |
-
load_data = misc_utils.input_3d_shape('cls')
|
135 |
cats = st.text_input("Custom Categories (64 max, separated with comma)")
|
136 |
cats = [a.strip() for a in cats.split(',')]
|
137 |
if len(cats) > 64:
|
@@ -139,185 +72,64 @@ def demo_classification():
|
|
139 |
return
|
140 |
lvis_run = st.form_submit_button("Run Classification on LVIS Categories")
|
141 |
custom_run = st.form_submit_button("Run Classification on Custom Categories")
|
142 |
-
if lvis_run or auto_submit("clsauto"):
|
143 |
-
pc = load_data(prog)
|
144 |
-
col2 = misc_utils.render_pc(pc)
|
145 |
-
prog.progress(0.5, "Running Classification")
|
146 |
-
pred = classification.pred_lvis_sims(model_g14, pc)
|
147 |
-
with col2:
|
148 |
-
for i, (cat, sim) in zip(range(5), pred.items()):
|
149 |
-
st.text(cat)
|
150 |
-
st.caption("Similarity %.4f" % sim)
|
151 |
-
prog.progress(1.0, "Idle")
|
152 |
-
if custom_run:
|
153 |
-
pc = load_data(prog)
|
154 |
-
col2 = misc_utils.render_pc(pc)
|
155 |
-
prog.progress(0.5, "Computing Category Embeddings")
|
156 |
-
device = clip_model.device
|
157 |
-
tn = clip_prep(text=cats, return_tensors='pt', truncation=True, max_length=76, padding=True).to(device)
|
158 |
-
feats = clip_model.get_text_features(**tn).float().cpu()
|
159 |
-
prog.progress(0.5, "Running Classification")
|
160 |
-
pred = classification.pred_custom_sims(model_g14, pc, cats, feats)
|
161 |
-
with col2:
|
162 |
-
for i, (cat, sim) in zip(range(5), pred.items()):
|
163 |
-
st.text(cat)
|
164 |
-
st.caption("Similarity %.4f" % sim)
|
165 |
-
prog.progress(1.0, "Idle")
|
166 |
-
if image_examples(samples_index.classification, 3, example_text="Examples (Choose one of the following 3D shapes)"):
|
167 |
-
queue_auto_submit("clsauto")
|
168 |
-
|
169 |
|
170 |
def demo_captioning():
|
171 |
with st.form("capform"):
|
172 |
-
load_data = misc_utils.input_3d_shape('cap')
|
173 |
cond_scale = st.slider('Conditioning Scale', 0.0, 4.0, 2.0, 0.1, key='capcondscl')
|
174 |
-
if st.form_submit_button("Generate a Caption") or auto_submit("capauto"):
|
175 |
-
pc = load_data(prog)
|
176 |
-
col2 = misc_utils.render_pc(pc)
|
177 |
-
prog.progress(0.5, "Running Generation")
|
178 |
-
cap = caption.pc_caption(model_b32, pc, cond_scale)
|
179 |
-
st.text(cap)
|
180 |
-
prog.progress(1.0, "Idle")
|
181 |
-
if image_examples(samples_index.cap, 3, example_text="Examples (Choose one of the following 3D shapes)"):
|
182 |
-
queue_auto_submit("capauto")
|
183 |
-
|
184 |
|
185 |
def demo_pc2img():
|
186 |
with st.form("sdform"):
|
187 |
-
load_data = misc_utils.input_3d_shape('sd')
|
188 |
prompt = st.text_input("Prompt (Optional)", key='sdtprompt')
|
189 |
-
noise_scale = st.slider('Variation Level', 0, 5, 1)
|
190 |
-
cfg_scale = st.slider('Guidance Scale', 0.0, 30.0, 10.0)
|
191 |
-
steps = st.slider('Diffusion Steps', 8, 50, 25)
|
192 |
-
width = 640 # st.slider('Width', 480, 640, step=32)
|
193 |
-
height = 640 # st.slider('Height', 480, 640, step=32)
|
194 |
-
if st.form_submit_button("Generate") or auto_submit("sdauto"):
|
195 |
-
pc = load_data(prog)
|
196 |
-
col2 = misc_utils.render_pc(pc)
|
197 |
-
prog.progress(0.49, "Running Generation")
|
198 |
-
if torch.cuda.is_available():
|
199 |
-
with sys.clip_move_lock:
|
200 |
-
clip_model.cpu()
|
201 |
-
img = sd_pc2img.pc_to_image(
|
202 |
-
model_l14, pc, prompt, noise_scale, width, height, cfg_scale, steps,
|
203 |
-
lambda i, t, _: prog.progress(0.49 + i / (steps + 1) / 2, "Running Diffusion Step %d" % i)
|
204 |
-
)
|
205 |
-
if torch.cuda.is_available():
|
206 |
-
with sys.clip_move_lock:
|
207 |
-
clip_model.cuda()
|
208 |
-
with col2:
|
209 |
-
st.image(img)
|
210 |
-
prog.progress(1.0, "Idle")
|
211 |
-
if image_examples(samples_index.sd, 3, example_text="Examples (Choose one of the following 3D shapes)"):
|
212 |
-
queue_auto_submit("sdauto")
|
213 |
-
|
214 |
-
|
215 |
-
def retrieval_results(results):
|
216 |
-
st.caption("Click the link to view the 3D shape")
|
217 |
-
for i in range(len(results) // 4):
|
218 |
-
cols = st.columns(4)
|
219 |
-
for j in range(4):
|
220 |
-
idx = i * 4 + j
|
221 |
-
if idx >= len(results):
|
222 |
-
continue
|
223 |
-
entry = results[idx]
|
224 |
-
with cols[j]:
|
225 |
-
ext_link = f"https://objaverse.allenai.org/explore/?query={entry['u']}"
|
226 |
-
st.image(entry['img'])
|
227 |
-
# st.markdown(f"[![thumbnail {entry['desc'].replace('\n', ' ')}]({entry['img']})]({ext_link})")
|
228 |
-
# st.text(entry['name'])
|
229 |
-
quote_name = entry['name'].replace('[', '\\[').replace(']', '\\]').replace('\n', ' ')
|
230 |
-
st.markdown(f"[{quote_name}]({ext_link})")
|
231 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
232 |
|
233 |
-
def retrieval_filter_expand(key):
|
234 |
-
with st.expander("Filters"):
|
235 |
-
sim_th = st.slider("Similarity Threshold", 0.05, 0.5, 0.1, key=key + 'rtsimth')
|
236 |
-
tag = st.text_input("Has Tag", "", key=key + 'rthastag')
|
237 |
-
col1, col2 = st.columns(2)
|
238 |
-
face_min = int(col1.text_input("Face Count Min", "0", key=key + 'rtfcmin'))
|
239 |
-
face_max = int(col2.text_input("Face Count Max", "34985808", key=key + 'rtfcmax'))
|
240 |
-
col1, col2 = st.columns(2)
|
241 |
-
anim_min = int(col1.text_input("Animation Count Min", "0", key=key + 'rtacmin'))
|
242 |
-
anim_max = int(col2.text_input("Animation Count Max", "563", key=key + 'rtacmax'))
|
243 |
-
tag_n = not bool(tag.strip())
|
244 |
-
anim_n = not (anim_min > 0 or anim_max < 563)
|
245 |
-
face_n = not (face_min > 0 or face_max < 34985808)
|
246 |
-
filter_fn = lambda x: (
|
247 |
-
(anim_n or anim_min <= x['anims'] <= anim_max)
|
248 |
-
and (face_n or face_min <= x['faces'] <= face_max)
|
249 |
-
and (tag_n or tag in x['tags'])
|
250 |
-
)
|
251 |
-
return sim_th, filter_fn
|
252 |
|
|
|
|
|
|
|
|
|
|
|
|
|
253 |
|
254 |
-
def demo_retrieval():
|
255 |
with tab_text:
|
256 |
with st.form("rtextform"):
|
257 |
-
k = st.slider("
|
258 |
-
text = st.text_input("Input Text", key=
|
259 |
sim_th, filter_fn = retrieval_filter_expand('text')
|
260 |
-
if st.form_submit_button("
|
261 |
prog.progress(0.49, "Computing Embeddings")
|
262 |
device = clip_model.device
|
263 |
-
tn = clip_prep(
|
264 |
-
text=[text], return_tensors='pt', truncation=True, max_length=76
|
265 |
-
).to(device)
|
266 |
enc = clip_model.get_text_features(**tn).float().cpu()
|
267 |
-
prog.progress(0.7, "Running Retrieval")
|
268 |
-
retrieval_results(retrieval.retrieve(enc, k, sim_th, filter_fn))
|
269 |
-
prog.progress(1.0, "Idle")
|
270 |
-
picked_sample = st.selectbox("Examples", ["Select..."] + samples_index.retrieval_texts)
|
271 |
-
text_last_example = st.session_state.get('text_last_example', None)
|
272 |
-
if text_last_example is None:
|
273 |
-
st.session_state.text_last_example = picked_sample
|
274 |
-
elif text_last_example != picked_sample and picked_sample != "Select...":
|
275 |
-
st.session_state.text_last_example = picked_sample
|
276 |
-
sq("inputrtext", picked_sample)
|
277 |
-
queue_auto_submit("rtextauto")
|
278 |
|
279 |
-
with tab_img:
|
280 |
-
submit = False
|
281 |
-
with st.form("rimgform"):
|
282 |
-
k = st.slider("Shapes to Retrieve", 1, 100, 16, key='rimage')
|
283 |
-
pic = st.file_uploader("Upload an Image", key='rimageinput')
|
284 |
-
sim_th, filter_fn = retrieval_filter_expand('image')
|
285 |
-
if st.form_submit_button("Run with Image"):
|
286 |
-
submit = True
|
287 |
-
results_container = st.container()
|
288 |
-
sample_got = image_examples(samples_index.iret, 4, 'rimageinput')
|
289 |
-
if sample_got:
|
290 |
-
pic = sample_got
|
291 |
-
if sample_got or submit:
|
292 |
-
img = Image.open(pic)
|
293 |
-
with results_container:
|
294 |
-
st.image(img)
|
295 |
-
prog.progress(0.49, "Computing Embeddings")
|
296 |
-
device = clip_model.device
|
297 |
-
tn = clip_prep(images=[img], return_tensors="pt").to(device)
|
298 |
-
enc = clip_model.get_image_features(pixel_values=tn['pixel_values'].type(half)).float().cpu()
|
299 |
prog.progress(0.7, "Running Retrieval")
|
300 |
retrieval_results(retrieval.retrieve(enc, k, sim_th, filter_fn))
|
|
|
301 |
prog.progress(1.0, "Idle")
|
302 |
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
prog.progress(0.7, "Running Retrieval")
|
315 |
-
retrieval_results(retrieval.retrieve(enc, k, sim_th, filter_fn))
|
316 |
-
prog.progress(1.0, "Idle")
|
317 |
-
if image_examples(samples_index.pret, 3):
|
318 |
-
queue_auto_submit("rpcauto")
|
319 |
|
320 |
|
|
|
|
|
|
|
|
|
321 |
try:
|
322 |
with tab_cls:
|
323 |
demo_classification()
|
|
|
1 |
import sys
|
2 |
import threading
|
3 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
import numpy
|
5 |
import torch
|
6 |
import openshape
|
7 |
import transformers
|
8 |
from PIL import Image
|
9 |
+
from huggingface_hub import HfFolder, snapshot_download
|
10 |
+
from demo_support import retrieval
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
@st.cache_resource
|
13 |
def load_openclip():
|
|
|
23 |
return clip_model, clip_prep
|
24 |
|
25 |
|
26 |
+
def retrieval_filter_expand(key):
|
27 |
+
with st.expander("Filters"):
|
28 |
+
sim_th = st.slider("Similarity Threshold", 0.05, 0.5, 0.1, key=key + 'rtsimth')
|
29 |
+
tag = st.text_input("Has Tag", "", key=key + 'rthastag')
|
30 |
+
col1, col2 = st.columns(2)
|
31 |
+
face_min = int(col1.text_input("Face Count Min", "0", key=key + 'rtfcmin'))
|
32 |
+
face_max = int(col2.text_input("Face Count Max", "34985808", key=key + 'rtfcmax'))
|
33 |
+
col1, col2 = st.columns(2)
|
34 |
+
anim_min = int(col1.text_input("Animation Count Min", "0", key=key + 'rtacmin'))
|
35 |
+
anim_max = int(col2.text_input("Animation Count Max", "563", key=key + 'rtacmax'))
|
36 |
+
tag_n = not bool(tag.strip())
|
37 |
+
anim_n = not (anim_min > 0 or anim_max < 563)
|
38 |
+
face_n = not (face_min > 0 or face_max < 34985808)
|
39 |
+
filter_fn = lambda x: (
|
40 |
+
(anim_n or anim_min <= x['anims'] <= anim_max)
|
41 |
+
and (face_n or face_min <= x['faces'] <= face_max)
|
42 |
+
and (tag_n or tag in x['tags'])
|
43 |
+
)
|
44 |
+
return sim_th, filter_fn
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
+
def retrieval_results(results):
|
47 |
+
st.caption("Click the link to view the 3D shape")
|
48 |
+
for i in range(len(results) // 4):
|
49 |
+
cols = st.columns(4)
|
50 |
+
for j in range(4):
|
51 |
+
idx = i * 4 + j
|
52 |
+
if idx >= len(results):
|
53 |
+
continue
|
54 |
+
entry = results[idx]
|
55 |
+
with cols[j]:
|
56 |
+
ext_link = f"https://objaverse.allenai.org/explore/?query={entry['u']}"
|
57 |
+
st.image(entry['img'])
|
58 |
+
# st.markdown(f"[![thumbnail {entry['desc'].replace('\n', ' ')}]({entry['img']})]({ext_link})")
|
59 |
+
# st.text(entry['name'])
|
60 |
+
quote_name = entry['name'].replace('[', '\\[').replace(']', '\\]').replace('\n', ' ')
|
61 |
+
st.markdown(f"[{quote_name}]({ext_link})")
|
62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
|
65 |
def demo_classification():
|
66 |
with st.form("clsform"):
|
67 |
+
#load_data = misc_utils.input_3d_shape('cls')
|
68 |
cats = st.text_input("Custom Categories (64 max, separated with comma)")
|
69 |
cats = [a.strip() for a in cats.split(',')]
|
70 |
if len(cats) > 64:
|
|
|
72 |
return
|
73 |
lvis_run = st.form_submit_button("Run Classification on LVIS Categories")
|
74 |
custom_run = st.form_submit_button("Run Classification on Custom Categories")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
def demo_captioning():
|
77 |
with st.form("capform"):
|
|
|
78 |
cond_scale = st.slider('Conditioning Scale', 0.0, 4.0, 2.0, 0.1, key='capcondscl')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
def demo_pc2img():
|
81 |
with st.form("sdform"):
|
|
|
82 |
prompt = st.text_input("Prompt (Optional)", key='sdtprompt')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
+
def demo_retrieval():
|
85 |
+
with tab_pc:
|
86 |
+
with st.form("rpcform"):
|
87 |
+
k = st.slider("Number of items to retrieve", 1, 100, 16, key='rpc')
|
88 |
+
pc = utils.load_3D_shape('rpcinput')
|
89 |
+
if st.form_submit_button("Retrieve with Point Cloud"):
|
90 |
+
prog.progress(0.49, "Computing Embeddings")
|
91 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
+
with tab_img:
|
94 |
+
with st.form("rimgform"):
|
95 |
+
k = st.slider("Number of items to retrieve", 1, 100, 16, key='rimage')
|
96 |
+
img = st.file_uploader("Upload an Image", key='rimageinput')
|
97 |
+
if st.form_submit_button("Retrieve with Image"):
|
98 |
+
prog.progress(0.49, "Computing Embeddings")
|
99 |
|
|
|
100 |
with tab_text:
|
101 |
with st.form("rtextform"):
|
102 |
+
k = st.slider("Number of items to retrieve", 1, 100, 16, key='rtext')
|
103 |
+
text = st.text_input("Input Text", key='rtextinput')
|
104 |
sim_th, filter_fn = retrieval_filter_expand('text')
|
105 |
+
if st.form_submit_button("Retrieve with Text"):
|
106 |
prog.progress(0.49, "Computing Embeddings")
|
107 |
device = clip_model.device
|
108 |
+
tn = clip_prep(text=[text], return_tensors='pt', truncation=True, max_length=76).to(device)
|
|
|
|
|
109 |
enc = clip_model.get_text_features(**tn).float().cpu()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
prog.progress(0.7, "Running Retrieval")
|
112 |
retrieval_results(retrieval.retrieve(enc, k, sim_th, filter_fn))
|
113 |
+
|
114 |
prog.progress(1.0, "Idle")
|
115 |
|
116 |
+
st.title("TripletMix Demo")
|
117 |
+
st.caption("For faster inference without waiting in queue, you may clone the space and run it yourself.")
|
118 |
+
prog = st.progress(0.0, "Idle")
|
119 |
+
tab_cls, tab_pc, tab_img, tab_text, tab_sd, tab_cap = st.tabs([
|
120 |
+
"Classification",
|
121 |
+
"Retrieval w/ 3D",
|
122 |
+
"Retrieval w/ Image",
|
123 |
+
"Retrieval w/ Text",
|
124 |
+
"Image Generation",
|
125 |
+
"Captioning",
|
126 |
+
])
|
|
|
|
|
|
|
|
|
|
|
127 |
|
128 |
|
129 |
+
f32 = numpy.float32
|
130 |
+
half = torch.float16 if torch.cuda.is_available() else torch.bfloat16
|
131 |
+
clip_model, clip_prep = load_openclip()
|
132 |
+
|
133 |
try:
|
134 |
with tab_cls:
|
135 |
demo_classification()
|