Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -107,7 +107,7 @@ def classification_custom(load_data, cats):
|
|
107 |
ref_dev = next(model_g14.parameters()).device
|
108 |
enc = model_g14(torch.tensor(pc[:, [0, 2, 1, 3, 4, 5]].T[None], device=ref_dev))
|
109 |
if model_name == "pb-sn-M":
|
110 |
-
enc = pc_adapter(enc)
|
111 |
sim = torch.matmul(torch.nn.functional.normalize(feats, dim=-1), torch.nn.functional.normalize(enc.cpu(), dim=-1).squeeze())
|
112 |
argsort = torch.argsort(sim, descending=True)
|
113 |
pred = OrderedDict((cats[i], sim[i]) for i in argsort if i < len(cats))
|
@@ -123,9 +123,10 @@ def retrieval_pc(load_data, k, sim_th, filter_fn):
|
|
123 |
prog.progress(0.5, "Computing Embeddings")
|
124 |
col2 = utils.render_pc(pc)
|
125 |
ref_dev = next(model_g14.parameters()).device
|
126 |
-
enc = model_g14(torch.tensor(pc[:, [0, 2, 1, 3, 4, 5]].T[None], device=ref_dev))
|
127 |
-
|
128 |
-
|
|
|
129 |
argsort = torch.argsort(sim, descending=True)
|
130 |
pred = OrderedDict((lvis.categories[i], sim[i]) for i in argsort if i < len(lvis.categories))
|
131 |
with col2:
|
@@ -213,7 +214,7 @@ try:
|
|
213 |
if model_name == "pb-sn-M":
|
214 |
model_g14, pc_adapter = load_tripletmix('tripletmix-pointbert-shapenet')
|
215 |
elif model_name == "pb-sn":
|
216 |
-
model_g14 = load_openshape('openshape-pointbert-
|
217 |
task = st.sidebar.selectbox(
|
218 |
'Task Selection',
|
219 |
("3D Classification", "Cross-modal retrieval", "Cross-modal generation")
|
|
|
107 |
ref_dev = next(model_g14.parameters()).device
|
108 |
enc = model_g14(torch.tensor(pc[:, [0, 2, 1, 3, 4, 5]].T[None], device=ref_dev))
|
109 |
if model_name == "pb-sn-M":
|
110 |
+
enc = pc_adapter(enc)
|
111 |
sim = torch.matmul(torch.nn.functional.normalize(feats, dim=-1), torch.nn.functional.normalize(enc.cpu(), dim=-1).squeeze())
|
112 |
argsort = torch.argsort(sim, descending=True)
|
113 |
pred = OrderedDict((cats[i], sim[i]) for i in argsort if i < len(cats))
|
|
|
123 |
prog.progress(0.5, "Computing Embeddings")
|
124 |
col2 = utils.render_pc(pc)
|
125 |
ref_dev = next(model_g14.parameters()).device
|
126 |
+
enc = model_g14(torch.tensor(pc[:, [0, 2, 1, 3, 4, 5]].T[None], device=ref_dev))
|
127 |
+
if model_name == "pb-sn-M":
|
128 |
+
enc = pc_adapter(enc)
|
129 |
+
sim = torch.matmul(torch.nn.functional.normalize(lvis.feats, dim=-1), torch.nn.functional.normalize(enc.cpu(), dim=-1).squeeze())
|
130 |
argsort = torch.argsort(sim, descending=True)
|
131 |
pred = OrderedDict((lvis.categories[i], sim[i]) for i in argsort if i < len(lvis.categories))
|
132 |
with col2:
|
|
|
214 |
if model_name == "pb-sn-M":
|
215 |
model_g14, pc_adapter = load_tripletmix('tripletmix-pointbert-shapenet')
|
216 |
elif model_name == "pb-sn":
|
217 |
+
model_g14 = load_openshape('openshape-pointbert-shapenet')
|
218 |
task = st.sidebar.selectbox(
|
219 |
'Task Selection',
|
220 |
("3D Classification", "Cross-modal retrieval", "Cross-modal generation")
|