File size: 11,791 Bytes
937e691 796185d 937e691 32e8892 796185d 32e8892 937e691 3eb37e3 937e691 3eb37e3 937e691 3eb37e3 937e691 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 |
import streamlit as st
import torch
import torchaudio
import matplotlib.pyplot as plt
import numpy as np
from dataclasses import dataclass
import string
import IPython
st.image('abby_cadabby_.jpeg')
# Part A: Import torch and torchaudio
st.write(torch.__version__)
st.write(torchaudio.__version__)
device = 'cpu'
st.write(device)
# Part B: Load the audio file
SPEECH_FILE = 'abby_cadabby.wav'
waveform, sample_rate = torchaudio.load(SPEECH_FILE)
st.write(SPEECH_FILE)
# Part C: torchaudio.pipelines | bundle.get_model | bundle.get_labels()
bundle = torchaudio.pipelines.WAV2VEC2_ASR_BASE_960H
model = bundle.get_model().to(device)
labels = bundle.get_labels()
# Inference mode
with torch.inference_mode():
# Load the audio file using torchaudio.load
waveform, sample_rate = torchaudio.load(SPEECH_FILE)
waveform = waveform.to(device)
# Pass the waveform through the model
emissions, _ = model(waveform)
emissions = torch.log_softmax(emissions, dim=-1)
# Get the emissions for the first example
emission = emissions[0].cpu().detach()
# Print the labels
st.write('Labels are: ', labels)
st.write('Length of labels are: ', len(labels))
# Part D: Frame-wise class probability plot
def plot():
fig, ax = plt.subplots()
img = ax.imshow(emission.T)
ax.set_title("Frame-wise class probability")
ax.set_xlabel("Time")
ax.set_ylabel("Labels")
fig.colorbar(img, ax=ax, shrink=0.6, location="bottom")
fig.tight_layout()
return fig
st.pyplot(plot())
# Part E: Remove punctuation add | after each word. Also, convert into all UPPERCASE
def remove_punctuation(input_string):
# Make a translator object to remove all punctuation
translator = str.maketrans('', '', string.punctuation)
# Split the input string into words
words = input_string.split()
# Remove punctuation from each word, convert to uppercase, and join them with '|'
clean_words = ['|' + word.translate(translator).upper() + '|' for word in words]
clean_transcript = ''.join(clean_words).strip('|')
return clean_transcript
# Test the function
transcript = " Oh hi! It's me, Abby Cadabby. Do you want to watch me practice my magic? I am going to turn this"
clean_transcript = remove_punctuation(transcript)
st.write(clean_transcript)
# Part F: Populate Trellis
updated_clean_UPPERCASE_transcript = "OH||HI||ITS||ME||ABBY||CADABBY||DO||YOU||WANT||TO||WATCH||ME||PRACTICE||MY||MAGIC||I||AM||GOING||TO||TURN||THIS"
dictionary = {c: i for i, c in enumerate(labels)}
tokens = [dictionary[c] for c in updated_clean_UPPERCASE_transcript]
st.write(list(zip(updated_clean_UPPERCASE_transcript, tokens)))
def get_trellis(emission, tokens, blank_id=0):
num_frame = emission.size(0)
num_tokens = len(tokens)
trellis = torch.zeros((num_frame, num_tokens))
trellis[1:, 0] = torch.cumsum(emission[1:, blank_id], 0)
trellis[0, 1:] = -float("inf")
trellis[-num_tokens + 1 :, 0] = float("inf")
for t in range(num_frame - 1):
trellis[t + 1, 1:] = torch.maximum(
# Score for staying at the same token
trellis[t, 1:] + emission[t, blank_id],
# Score for changing to the next token
trellis[t, :-1] + emission[t, tokens[1:]]
)
return trellis
trellis = get_trellis(emission, tokens)
st.write('Trellis =', trellis)
# Part G: Labels and Time -Inf | +Inf
def n_inf_to_p_inf():
fig, ax = plt.subplots()
img = ax.imshow(trellis.T, origin="lower")
ax.annotate("- Inf", (trellis.size(1) / 5, trellis.size(1) / 1.5))
# Shift the "+ Inf" annotation to the right by increasing the denominator
ax.annotate("+ Inf", (trellis.size(0) - trellis.size(1) / 2.4 , trellis.size(1) / 3))
fig.colorbar(img, ax=ax, shrink=0.25, location="bottom")
fig.tight_layout()
return fig
st.pyplot(n_inf_to_p_inf())
# Part H: Backtrack Trellis Emissions Tensor and Tokens
@dataclass
class Point:
token_index: int
time_index: int
score: float
def backtrack(trellis, emission, tokens, blank_id=0):
t, j = trellis.size(0) - 1, trellis.size(1) - 1
path = [Point(j, t, emission[t, blank_id].exp().item())]
while j > 0:
# Should not happen but just in case
assert t > 0
# 1. Figure out if the current position was stay or change
# Frame-wise score of stay vs change
p_stay = emission[t - 1, blank_id]
p_change = emission[t - 1, tokens[j]]
# Context-aware score for stay vs change
stayed = trellis[t - 1, j] + p_stay
changed = trellis[t - 1, j - 1] + p_change
# Update position
t -= 1
if changed > stayed:
j -= 1
# Store the path with frame-wise probability
prob = (p_change if changed > stayed else p_stay).exp().item()
path.append(Point(j, t, prob))
# Now j == 0, which means, it reached the SOS.
# Fill up the rest for the sake of visualization
while t > 0:
prob = emission[t - 1, blank_id].exp().item()
path.append(Point(j, t - 1, prob))
t -= 1
return path[::-1]
path = backtrack(trellis, emission, tokens)
for p in path:
st.write('Token index, Time index and Score:')
st.write(p)
# Part I: Trellis with Path Visualization
def plot_trellis_with_path(trellis, path):
# To plot trellis with path, we take advantage of 'nan' value
trellis_with_path = trellis.clone()
for _, p in enumerate(path):
trellis_with_path[p.time_index, p.token_index] = float("nan")
plt.imshow(trellis_with_path.T, origin="lower")
plt.title("The path found by backtracking")
plt.tight_layout()
return plt
st.pyplot(plot_trellis_with_path(trellis, path))
# Part J: Merge Repeats | Segments
# Merge the labels
@dataclass
class Segment:
label: str
start: int
end: int
score: float
def __repr__(self):
return f"{self.label}\t({self.score:4.2f}) : [{self.start:5d}, {self.end:5d})"
@property
def length(self):
return self.end - self.start
def merge_repeats(path):
i1, i2 = 0, 0
segments = []
while i1 < len(path):
while i2 < len(path) and path[i1].token_index == path[i2].token_index:
i2 += 1
score = sum(path[k].score for k in range(i1, i2)) / (i2 - i1)
segments.append(
Segment(
updated_clean_UPPERCASE_transcript[path[i1].token_index],
path[i1].time_index,
path[i2 - 1].time_index + 1,
score,
)
)
i1 = i2
return segments
segments = merge_repeats(path)
for seg in segments:
st.write('Segments:')
st.write(seg)
# Part K: Trellis with Segments Visualization
def plot_trellis_with_segments(trellis, segments, transcript):
# To plot trellis with path, we take advantage of 'nan' value
trellis_with_path = trellis.clone()
for i, seg in enumerate(segments):
if seg.label != "|":
trellis_with_path[seg.start : seg.end, i] = float("nan")
fig, [ax1, ax2] = plt.subplots(2, 1, sharex=True, figsize=(15, 15))
ax1.set_title("Path, label and probability for each label")
ax1.imshow(trellis_with_path.T, origin="lower", aspect="auto")
# Adjust the position of the annotations to spread them out
for i, seg in enumerate(segments):
if seg.label != "|":
ax1.annotate(seg.label, (seg.start, i - 0.3), size="small")
ax1.annotate(f"{seg.score:.2f}", (seg.start, i + 0.3), size="small")
ax2.set_title("Label probability with and without repetition")
xs, hs, ws = [], [], []
for seg in segments:
if seg.label != "|":
xs.append((seg.end + seg.start) / 2 + 0.4)
hs.append(seg.score)
ws.append(seg.end - seg.start)
ax2.annotate(seg.label, (seg.start + 0.8, -0.07), rotation=0)
ax2.bar(xs, hs, width=ws, color="gray", alpha=0.9, edgecolor="black")
xs, hs = [], []
for p in path:
label = transcript[p.token_index]
if label != "|":
xs.append(p.time_index + 1)
hs.append(p.score)
ax2.bar(xs, hs, width=0.9, alpha=0.9)
ax2.axhline(0, color="black")
ax2.grid(True, axis="y")
ax2.set_ylim(-0.1, 1.1)
fig.tight_layout()
return fig
plot_trellis_with_segments(trellis, segments, updated_clean_UPPERCASE_transcript)
st.pyplot(plot_trellis_with_segments(trellis, segments, updated_clean_UPPERCASE_transcript))
# Part L: Merge words | Segments
# Merge words
def merge_words(segments, separator="|"):
words = []
i1, i2 = 0, 0
while i1 < len(segments):
if i2 >= len(segments) or segments[i2].label == separator:
if i1 != i2:
segs = segments[i1:i2]
word = "".join([seg.label for seg in segs])
score = sum(seg.score * seg.length for seg in segs) / sum(seg.length for seg in segs)
words.append(Segment(word, segments[i1].start, segments[i2 - 1].end, score))
i1 = i2 + 1
i2 = i1
else:
i2 += 1
return words
word_segments = merge_words(segments)
for word in word_segments:
st.write('Word Segments:')
st.write(word)
# Part M: Alignment Visualizations
def plot_alignments(trellis, segments, word_segments, waveform=np.random.randn(1024), sample_rate=44100):
trellis_with_path = trellis.clone()
for i, seg in enumerate(segments):
if seg.label != "|":
trellis_with_path[seg.start : seg.end, i] = float("nan")
fig, [ax1, ax2] = plt.subplots(2, 1, figsize=(20, 18))
ax1.imshow(trellis_with_path.T, origin="lower", aspect="auto")
ax1.set_facecolor("lightgray")
ax1.set_xticks([])
ax1.set_yticks([])
for word in word_segments:
ax1.axvspan(word.start - 0.5, word.end - 0.5, edgecolor="white", facecolor="none")
for i, seg in enumerate(segments):
if seg.label != "|":
ax1.annotate(seg.label, (seg.start, i - 0.7), size="small")
ax1.annotate(f"{seg.score:.2f}", (seg.start, i + 3), size="small")
# The original waveform
NFFT = 1024
#ratio = waveform.size(0) / sample_rate / trellis.size(0)
#ratio = len(waveform) / sample_rate / trellis.size(0)
ratio = len(waveform) / sample_rate / trellis.size(0) #-> populates both visualizations
ax2.specgram(waveform, Fs=sample_rate, NFFT=NFFT)
for word in word_segments:
x0 = ratio * word.start
x1 = ratio * word.end
ax2.axvspan(x0, x1, facecolor="none", edgecolor="white", hatch="/")
ax2.annotate(f"{word.score:.2f}", (x0, sample_rate * 0.51), annotation_clip=False)
for seg in segments:
if seg.label != "|":
ax2.annotate(seg.label, (seg.start * ratio, sample_rate * 0.55), annotation_clip=False)
ax2.set_xlabel("time [second]")
ax2.set_yticks([])
fig.tight_layout()
return fig
plot_alignments(trellis, segments, word_segments, waveform, sample_rate)
st.pyplot(plot_alignments(trellis, word_segments, waveform, sample_rate))
# Part N: Display Segment
def display_segment(i):
ratio = waveform.size(1) / trellis.size(0)
word = word_segments[i]
x0 = int(ratio * word.start)
x1 = int(ratio * word.end)
print(f"{word.label} ({word.score:.2f}): {x0 / bundle.sample_rate:.3f} - {x1 / bundle.sample_rate:.3f} sec")
segment = waveform[:, x0:x1]
return IPython.display.Audio(segment.numpy(), rate=bundle.sample_rate)
# Part O: Audio generation for each segment
st.write('Abby Cadabby Transcript:')
st.write('Transcript')
st.write(IPython.display.Audio(SPEECH_FILE))
|