---
title: dzai
app_file: gradio_demo_img2img.py
sdk: gradio
sdk_version: 4.8.0
---
# DemoFusion
[![Project Page](https://img.shields.io/badge/Project-Page-green.svg)](https://ruoyidu.github.io/demofusion/demofusion.html)
[![arXiv](https://img.shields.io/badge/arXiv-2311.16973-b31b1b.svg)](https://arxiv.org/pdf/2311.16973.pdf)
[![Replicate](https://img.shields.io/badge/Demo-%F0%9F%9A%80%20Replicate-blue)](https://replicate.com/lucataco/demofusion)
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/camenduru/DemoFusion-colab/blob/main/DemoFusion_colab.ipynb)
[![Hugging Face](https://img.shields.io/badge/i2i-%F0%9F%A4%97%20Hugging%20Face-blue)](https://huggingface.co/spaces/radames/Enhance-This-DemoFusion-SDXL)
[![Page Views Count](https://badges.toozhao.com/badges/01HFMAPCVTA1T32KN2PASNYGYK/blue.svg)](https://badges.toozhao.com/stats/01HFMAPCVTA1T32KN2PASNYGYK "Get your own page views count badge on badges.toozhao.com")
Code release for "DemoFusion: Democratising High-Resolution Image Generation With No 💰" (arXiv 2023)
**Abstract**: High-resolution image generation with Generative Artificial Intelligence (GenAI) has immense potential but, due to the enormous capital investment required for training, it is increasingly centralised to a few large corporations, and hidden behind paywalls. This paper aims to democratise high-resolution GenAI by advancing the frontier of high-resolution generation while remaining accessible to a broad audience. We demonstrate that existing Latent Diffusion Models (LDMs) possess untapped potential for higher-resolution image generation. Our novel DemoFusion framework seamlessly extends open-source GenAI models, employing Progressive Upscaling, Skip Residual, and Dilated Sampling mechanisms to achieve higher-resolution image generation. The progressive nature of DemoFusion requires more passes, but the intermediate results can serve as "previews", facilitating rapid prompt iteration.
# News
- **2023.12.12**: ✨ DemoFusion with ControNet is availabe now! Check it out at `pipeline_demofusion_sdxl_controlnet`! The local [Gradio Demo](https://github.com/PRIS-CV/DemoFusion#DemoFusionControlNet-with-local-Gradio-demo) is also available.
- **2023.12.10**: ✨ Image2Image is supported by `pipeline_demofusion_sdxl` now! The local [Gradio Demo](https://github.com/PRIS-CV/DemoFusion#Image2Image-with-local-Gradio-demo) is also available.
- **2023.12.08**: 🚀 A HuggingFace Demo for Img2Img is now available! [![Hugging Face](https://img.shields.io/badge/i2i-%F0%9F%A4%97%20Hugging%20Face-blue)](https://huggingface.co/spaces/radames/Enhance-This-DemoFusion-SDXL) Thank [Radamés](https://github.com/radames) for the implementation and [![Hugging Face](https://img.shields.io/badge/Hugging%20Face-Diffusers-orange.svg)](https://huggingface.co/docs/diffusers/index) for the support!
- **2023.12.07**: 🚀 Add Colab demo [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/camenduru/DemoFusion-colab/blob/main/DemoFusion_colab.ipynb). Check it out! Thank [camenduru](https://github.com/camenduru) for the implementation!
- **2023.12.06**: ✨ The local [Gradio Demo](https://github.com/PRIS-CV/DemoFusion#Text2Image-with-local-Gradio-demo) is now available! Better interaction and presentation!
- **2023.12.04**: ✨ A [low-vram version](https://github.com/PRIS-CV/DemoFusion#Text2Image-on-Windows-with-8-GB-of-VRAM) of DemoFusion is available! Thank [klimaleksus](https://github.com/klimaleksus) for the implementation!
- **2023.12.01**: 🚀 Integrated to [Replicate](https://replicate.com/explore). Check out the online demo: [![Replicate](https://img.shields.io/badge/Demo-%F0%9F%9A%80%20Replicate-blue)](https://replicate.com/lucataco/demofusion) Thank [Luis C.](https://github.com/lucataco) for the implementation!
- **2023.11.29**: 💰 `pipeline_demofusion_sdxl` is released.
# Usage
## A quick try with integrated demos
- HuggingFace Space: Try Text2Image generation at [![Hugging Face](https://img.shields.io/badge/t2i-%F0%9F%A4%97%20Hugging%20Face-blue)](https://huggingface.co/spaces/fffiloni/DemoFusion) and Image2Image enhancement at [![Hugging Face](https://img.shields.io/badge/i2i-%F0%9F%A4%97%20Hugging%20Face-blue)](https://huggingface.co/spaces/radames/Enhance-This-DemoFusion-SDXL).
- Colab: Try Text2Image generation at [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/camenduru/DemoFusion-colab/blob/main/DemoFusion_colab.ipynb) and Image2Image enhancement at [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/camenduru/DemoFusion-colab/blob/main/DemoFusion_img2img_colab.ipynb).
- Replicate: Try Text2Image generation at [![Replicate](https://img.shields.io/badge/Demo-%F0%9F%9A%80%20Replicate-blue)](https://replicate.com/lucataco/demofusion) and Image2Image enhancement at [![Replicate](https://img.shields.io/badge/Demo-%F0%9F%9A%80%20Replicate-blue)](https://replicate.com/lucataco/demofusion-enhance).
## Starting with our code
### Hyper-parameters
- `view_batch_size` (`int`, defaults to 16):
The batch size for multiple denoising paths. Typically, a larger batch size can result in higher efficiency but comes with increased GPU memory requirements.
- `stride` (`int`, defaults to 64):
The stride of moving local patches. A smaller stride is better for alleviating seam issues, but it also introduces additional computational overhead and inference time.
- `cosine_scale_1` (`float`, defaults to 3):
Control the decreasing rate of skip-residual. A smaller value results in better consistency with low-resolution results, but it may lead to more pronounced upsampling noise. Please refer to Appendix C in the DemoFusion paper.
- `cosine_scale_2` (`float`, defaults to 1):
Control the decreasing rate of dilated sampling. A smaller value can better address the repetition issue, but it may lead to grainy images. For specific impacts, please refer to Appendix C in the DemoFusion paper.
- `cosine_scale_3` (`float`, defaults to 1):
Control the decrease rate of the Gaussian filter. A smaller value results in less grainy images, but it may lead to over-smoothing images. Please refer to Appendix C in the DemoFusion paper.
- `sigma` (`float`, defaults to 1):
The standard value of the Gaussian filter. A larger sigma promotes the global guidance of dilated sampling, but it has the potential of over-smoothing.
- `multi_decoder` (`bool`, defaults to True):
Determine whether to use a tiled decoder. Generally, a tiled decoder becomes necessary when the resolution exceeds 3072*3072 on an RTX 3090 GPU.
- `show_image` (`bool`, defaults to False):
Determine whether to show intermediate results during generation.
### Text2Image (will take about 17 GB of VRAM)
- Set up the dependencies as:
```
conda create -n demofusion python=3.9
conda activate demofusion
pip install -r requirements.txt
```
- Download `pipeline_demofusion_sdxl.py` and run it as follows. A use case can be found in `demo.ipynb`.
```
from pipeline_demofusion_sdxl import DemoFusionSDXLPipeline
import torch
model_ckpt = "stabilityai/stable-diffusion-xl-base-1.0"
pipe = DemoFusionSDXLPipeline.from_pretrained(model_ckpt, torch_dtype=torch.float16)
pipe = pipe.to("cuda")
prompt = "Envision a portrait of an elderly woman, her face a canvas of time, framed by a headscarf with muted tones of rust and cream. Her eyes, blue like faded denim. Her attire, simple yet dignified."
negative_prompt = "blurry, ugly, duplicate, poorly drawn, deformed, mosaic"
images = pipe(prompt, negative_prompt=negative_prompt,
height=3072, width=3072, view_batch_size=16, stride=64,
num_inference_steps=50, guidance_scale=7.5,
cosine_scale_1=3, cosine_scale_2=1, cosine_scale_3=1, sigma=0.8,
multi_decoder=True, show_image=True
)
for i, image in enumerate(images):
image.save('image_' + str(i) + '.png')
```
- ⚠️ When you have enough VRAM (e.g., generating 2048*2048 images on hardware with more than 18GB RAM), you can set `multi_decoder=False`, which can make the decoding process faster.
- Please feel free to try different prompts and resolutions.
- Default hyper-parameters are recommended, but they may not be optimal for all cases. For specific impacts of each hyper-parameter, please refer to Appendix C in the DemoFusion paper.
- The code was cleaned before the release. If you encounter any issues, please contact us.
### Text2Image on Windows with 8 GB of VRAM
- Set up the environment as:
```
cmd
git clone "https://github.com/PRIS-CV/DemoFusion"
cd DemoFusion
python -m venv venv
venv\Scripts\activate
pip install -U "xformers==0.0.22.post7+cu118" --index-url https://download.pytorch.org/whl/cu118
pip install "diffusers==0.21.4" "matplotlib==3.8.2" "transformers==4.35.2" "accelerate==0.25.0"
```
- Launch DemoFusion as follows. The use case can be found in `demo_lowvram.py`.
```
python
from pipeline_demofusion_sdxl import DemoFusionSDXLPipeline
import torch
from diffusers.models import AutoencoderKL
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
model_ckpt = "stabilityai/stable-diffusion-xl-base-1.0"
pipe = DemoFusionSDXLPipeline.from_pretrained(model_ckpt, torch_dtype=torch.float16, vae=vae)
pipe = pipe.to("cuda")
prompt = "Envision a portrait of an elderly woman, her face a canvas of time, framed by a headscarf with muted tones of rust and cream. Her eyes, blue like faded denim. Her attire, simple yet dignified."
negative_prompt = "blurry, ugly, duplicate, poorly drawn, deformed, mosaic"
images = pipe(prompt, negative_prompt=negative_prompt,
height=2048, width=2048, view_batch_size=4, stride=64,
num_inference_steps=40, guidance_scale=7.5,
cosine_scale_1=3, cosine_scale_2=1, cosine_scale_3=1, sigma=0.8,
multi_decoder=True, show_image=False, lowvram=True
)
for i, image in enumerate(images):
image.save('image_' + str(i) + '.png')
```
### Text2Image with local Gradio demo
- Make sure you have installed `gradio` and `gradio_imageslider`.
- Launch DemoFusion via Gradio demo now -- try `python gradio_demo.py`! Better Interaction and Presentation!
### Image2Image with local Gradio demo
- Make sure you have installed `gradio` and `gradio_imageslider`.
- Launch DemoFusion Image2Image by `python gradio_demo_img2img.py`.
- ⚠️ Please note that, as a tuning-free framework, DemoFusion's Image2Image capability is strongly correlated with the SDXL's training data distribution and will show a significant bias. An accurate prompt to describe the content and style of the input also significantly improves performance. Have fun and regard it as a side application of text+image based generation.
### DemoFusion+ControlNet with local Gradio demo
- Make sure you have installed `gradio` and `gradio_imageslider`.
- Launch DemoFusion+ControNet Text2Image by `python gradio_demo.py`.
-
- Launch DemoFusion+ControNet Image2Image by `python gradio_demo_img2img.py`.
-
## Citation
If you find this paper useful in your research, please consider citing:
```
@article{du2023demofusion,
title={DemoFusion: Democratising High-Resolution Image Generation With No $$$},
author={Du, Ruoyi and Chang, Dongliang and Hospedales, Timothy and Song, Yi-Zhe and Ma, Zhanyu},
journal={arXiv preprint arXiv:2311.16973},
year={2023}
}
```