James McCool commited on
Commit
9fe0d78
·
1 Parent(s): de08cca

Initial Commit

Browse files
Files changed (3) hide show
  1. app.py +601 -0
  2. app.yaml +10 -0
  3. requirements.txt +9 -0
app.py ADDED
@@ -0,0 +1,601 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pandas as pd
3
+ import streamlit as st
4
+ import gspread
5
+ import plotly.figure_factory as ff
6
+ import pymongo
7
+
8
+ st.set_page_config(layout="wide")
9
+
10
+ @st.cache_resource
11
+ def init_conn():
12
+ scope = ['https://www.googleapis.com/auth/spreadsheets',
13
+ "https://www.googleapis.com/auth/drive"]
14
+
15
+ credentials = {
16
+ "type": "service_account",
17
+ "project_id": "sheets-api-connect-378620",
18
+ "private_key_id": "1005124050c80d085e2c5b344345715978dd9cc9",
19
+ "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
20
+ "client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
21
+ "client_id": "106625872877651920064",
22
+ "auth_uri": "https://accounts.google.com/o/oauth2/auth",
23
+ "token_uri": "https://oauth2.googleapis.com/token",
24
+ "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
25
+ "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
26
+ }
27
+
28
+ uri = st.secrets['mongo_uri']
29
+ client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
30
+ db = client["MLB_Database"]
31
+
32
+ gc = gspread.service_account_from_dict(credentials)
33
+
34
+ return db, gc
35
+
36
+ db, gc = init_conn()
37
+
38
+ game_format = {'Win Percentage': '{:.2%}','Cover Spread Percentage': '{:.2%}', 'First Inning Lead Percentage': '{:.2%}',
39
+ 'Fifth Inning Lead Percentage': '{:.2%}'}
40
+ american_format = {'First Inning Lead Percentage': '{:.2%}', 'Fifth Inning Lead Percentage': '{:.2%}'}
41
+
42
+ master_hold = 'https://docs.google.com/spreadsheets/d/1f42Ergav8K1VsOLOK9MUn7DM_MLMvv4GR2Fy7EfnZTc/edit#gid=340831852'
43
+
44
+ @st.cache_resource(ttl = 300)
45
+ def init_baselines():
46
+ collection = db["Pitcher_Stats"]
47
+ cursor = collection.find()
48
+ raw_display = pd.DataFrame(cursor)
49
+ raw_display.rename(columns={"Names": "Player"}, inplace = True)
50
+ pitcher_stats = raw_display[['Player', 'Team', 'BB', 'Hits', 'HRs', 'ERs', 'Ks', 'Outs', 'Fantasy', 'FD_Fantasy', 'PrizePicks']]
51
+ pitcher_stats = pitcher_stats.drop_duplicates(subset='Player')
52
+
53
+ collection = db['Hitter_Stats']
54
+ cursor = collection.find()
55
+ raw_display = pd.DataFrame(cursor)
56
+ raw_display.rename(columns={"Names": "Player"}, inplace = True)
57
+ hitter_stats = raw_display[['Player', 'Team', 'Walks', 'Steals', 'Hits', 'Singles', 'Doubles', 'HRs', 'RBIs', 'Runs', 'Fantasy', 'FD_Fantasy', 'PrizePicks']]
58
+ hitter_stats['Total Bases'] = hitter_stats['Singles'] + (hitter_stats['Doubles'] * 2) + (hitter_stats['HRs'] * 4)
59
+ hitter_stats['Hits + Runs + RBIs'] = hitter_stats['Hits'] + hitter_stats['Runs'] + hitter_stats['RBIs']
60
+ hitter_stats = hitter_stats.drop_duplicates(subset='Player')
61
+
62
+ collection = db['Game_Betting_Model']
63
+ cursor = collection.find()
64
+ raw_display = pd.DataFrame(cursor)
65
+ team_frame = raw_display.drop_duplicates(subset='Names')
66
+
67
+ sh = gc.open_by_url(master_hold)
68
+ worksheet = sh.worksheet('prop_frame')
69
+ raw_display = pd.DataFrame(worksheet.get_all_records())
70
+ raw_display.replace('', np.nan, inplace=True)
71
+ prop_frame = raw_display.dropna(subset='Team')
72
+
73
+ worksheet = sh.worksheet('Prop_results')
74
+ raw_display = pd.DataFrame(worksheet.get_all_records())
75
+ raw_display.replace('', np.nan, inplace=True)
76
+ betsheet_frame = raw_display.dropna(subset='proj')
77
+
78
+ worksheet = sh.worksheet('Pick6_ingest')
79
+ raw_display = pd.DataFrame(worksheet.get_all_records())
80
+ raw_display.replace('', np.nan, inplace=True)
81
+ pick_frame = raw_display.dropna(subset='Player')
82
+
83
+ return pitcher_stats, hitter_stats, team_frame, prop_frame, betsheet_frame, pick_frame
84
+
85
+ pitcher_stats, hitter_stats, team_frame, prop_frame, betsheet_frame, pick_frame = init_baselines()
86
+
87
+ tab1, tab2, tab3, tab4, tab5, tab6 = st.tabs(["Game Betting Model", "Pitcher Prop Projections", "Hitter Prop Projections", "Player Prop Simulations", "Stat Specific Simulations", "Bet Sheet"])
88
+
89
+ def convert_df_to_csv(df):
90
+ return df.to_csv().encode('utf-8')
91
+
92
+ with tab1:
93
+ if st.button("Reset Data", key='reset1'):
94
+ st.cache_data.clear()
95
+ pitcher_stats, hitter_stats, team_frame, prop_frame, betsheet_frame, pick_frame = init_baselines()
96
+ line_var1 = st.radio('How would you like to display odds?', options = ['Percentage', 'American'], key='line_var1')
97
+ if line_var1 == 'Percentage':
98
+ team_frame = team_frame[['Names', 'Game', 'Moneyline', 'Win Percentage', 'ML_Value', 'Spread', 'Cover Spread Percentage', 'Spread_Value', 'Avg Score', 'Game Total', 'Avg Fifth Inning', 'Fifth Inning Lead Percentage']]
99
+ team_frame = team_frame.set_index('Names')
100
+ st.dataframe(team_frame.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(game_format, precision=2), use_container_width = True)
101
+ if line_var1 == 'American':
102
+ team_frame = team_frame[['Names', 'Game', 'Moneyline', 'American ML', 'ML_Value', 'Spread', 'American Cover', 'Spread_Value', 'Avg Score', 'Game Total', 'Avg Fifth Inning', 'Fifth Inning Lead Percentage']]
103
+ team_frame.rename(columns={"American ML": "Win Percentage", "American Cover": "Cover Spread Percentage"}, inplace = True)
104
+ team_frame = team_frame.set_index('Names')
105
+ st.dataframe(team_frame.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(american_format, precision=2), use_container_width = True)
106
+
107
+ st.download_button(
108
+ label="Export Team Model",
109
+ data=convert_df_to_csv(team_frame),
110
+ file_name='MLB_team_betting_export.csv',
111
+ mime='text/csv',
112
+ key='team_export',
113
+ )
114
+
115
+ with tab2:
116
+ if st.button("Reset Data", key='reset2'):
117
+ st.cache_data.clear()
118
+ pitcher_stats, hitter_stats, team_frame, prop_frame, betsheet_frame, pick_frame = init_baselines()
119
+ split_var1 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var1')
120
+ if split_var1 == 'Specific Teams':
121
+ team_var1 = st.multiselect('Which teams would you like to include in the tables?', options = pitcher_stats['Team'].unique(), key='team_var1')
122
+ elif split_var1 == 'All':
123
+ team_var1 = pitcher_stats.Team.values.tolist()
124
+ pitcher_stats = pitcher_stats[pitcher_stats['Team'].isin(team_var1)]
125
+ pitcher_frame = pitcher_stats.set_index('Player')
126
+ pitcher_frame = pitcher_frame.sort_values(by='Ks', ascending=False)
127
+ st.dataframe(pitcher_frame.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
128
+ st.download_button(
129
+ label="Export Prop Model",
130
+ data=convert_df_to_csv(pitcher_frame),
131
+ file_name='MLB_pitcher_prop_export.csv',
132
+ mime='text/csv',
133
+ key='pitcher_prop_export',
134
+ )
135
+
136
+ with tab3:
137
+ if st.button("Reset Data", key='reset3'):
138
+ st.cache_data.clear()
139
+ pitcher_stats, hitter_stats, team_frame, prop_frame, betsheet_frame, pick_frame = init_baselines()
140
+ split_var2 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var2')
141
+ if split_var2 == 'Specific Teams':
142
+ team_var2 = st.multiselect('Which teams would you like to include in the tables?', options = hitter_stats['Team'].unique(), key='team_var2')
143
+ elif split_var2 == 'All':
144
+ team_var2 = hitter_stats.Team.values.tolist()
145
+ hitter_stats = hitter_stats[hitter_stats['Team'].isin(team_var2)]
146
+ hitter_frame = hitter_stats.set_index('Player')
147
+ hitter_frame = hitter_frame.sort_values(by='Hits + Runs + RBIs', ascending=False)
148
+ st.dataframe(hitter_frame.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
149
+ st.download_button(
150
+ label="Export Prop Model",
151
+ data=convert_df_to_csv(hitter_frame),
152
+ file_name='MLB_hitter_prop_export.csv',
153
+ mime='text/csv',
154
+ key='hitter_prop_export',
155
+ )
156
+
157
+ with tab4:
158
+ if st.button("Reset Data", key='reset4'):
159
+ st.cache_data.clear()
160
+ pitcher_stats, hitter_stats, team_frame, prop_frame, betsheet_frame, pick_frame = init_baselines()
161
+ col1, col2 = st.columns([1, 5])
162
+
163
+ with col2:
164
+ df_hold_container = st.empty()
165
+ info_hold_container = st.empty()
166
+ plot_hold_container = st.empty()
167
+
168
+ with col1:
169
+ prop_group_var = st.selectbox('What kind of props are you simulating?', options = ['Pitchers', 'Hitters'])
170
+ if prop_group_var == 'Pitchers':
171
+ player_check = st.selectbox('Select player to simulate props', options = pitcher_stats['Player'].unique())
172
+ prop_type_var = st.selectbox('Select type of prop to simulate', options = ['Strikeouts', 'Walks', 'Hits', 'Homeruns', 'Earned Runs', 'Outs', 'Fantasy', 'FD_Fantasy', 'PrizePicks'])
173
+ elif prop_group_var == 'Hitters':
174
+ player_check = st.selectbox('Select player to simulate props', options = hitter_stats['Player'].unique())
175
+ prop_type_var = st.selectbox('Select type of prop to simulate', options = ['Total Bases', 'Walks', 'Steals', 'Hits', 'Singles', 'Doubles', 'Homeruns', 'RBIs', 'Runs', 'Hits + Runs + RBIs', 'Fantasy', 'FD_Fantasy', 'PrizePicks'])
176
+
177
+ ou_var = st.selectbox('Select wether it is an over or under', options = ['Over', 'Under'])
178
+ prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 50.5, value = 5.5, step = .5)
179
+ line_var = st.number_input('Type in the line on the prop (i.e. -120)', min_value = -1000, max_value = 1000, value = -150, step = 1)
180
+ line_var = line_var + 1
181
+
182
+ if st.button('Simulate Prop'):
183
+ with col2:
184
+
185
+ with df_hold_container.container():
186
+
187
+ if prop_group_var == 'Pitchers':
188
+ df = pitcher_stats
189
+ elif prop_group_var == 'Hitters':
190
+ df = hitter_stats
191
+
192
+ total_sims = 1000
193
+
194
+ df.replace("", 0, inplace=True)
195
+
196
+ player_var = df.loc[df['Player'] == player_check]
197
+ player_var = player_var.reset_index()
198
+
199
+ if prop_group_var == 'Pitchers':
200
+ if prop_type_var == "Walks":
201
+ df['Median'] = df['BB']
202
+ elif prop_type_var == "Hits":
203
+ df['Median'] = df['Hits']
204
+ elif prop_type_var == "Homeruns":
205
+ df['Median'] = df['HRs']
206
+ elif prop_type_var == "Earned Runs":
207
+ df['Median'] = df['ERs']
208
+ elif prop_type_var == "Strikeouts":
209
+ df['Median'] = df['Ks']
210
+ elif prop_type_var == "Outs":
211
+ df['Median'] = df['Outs']
212
+ elif prop_type_var == "Fantasy":
213
+ df['Median'] = df['Fantasy']
214
+ elif prop_type_var == "FD_Fantasy":
215
+ df['Median'] = df['FD_Fantasy']
216
+ elif prop_type_var == "PrizePicks":
217
+ df['Median'] = df['PrizePicks']
218
+ elif prop_group_var == 'Hitters':
219
+ if prop_type_var == "Walks":
220
+ df['Median'] = df['Walks']
221
+ elif prop_type_var == "Total Bases":
222
+ df['Median'] = df['Total Bases']
223
+ elif prop_type_var == "Hits + Runs + RBIs":
224
+ df['Median'] = df['Hits + Runs + RBIs']
225
+ elif prop_type_var == "Steals":
226
+ df['Median'] = df['Steals']
227
+ elif prop_type_var == "Hits":
228
+ df['Median'] = df['Hits']
229
+ elif prop_type_var == "Singles":
230
+ df['Median'] = df['Singles']
231
+ elif prop_type_var == "Doubles":
232
+ df['Median'] = df['Doubles']
233
+ elif prop_type_var == "Homeruns":
234
+ df['Median'] = df['HRs']
235
+ elif prop_type_var == "RBIs":
236
+ df['Median'] = df['RBIs']
237
+ elif prop_type_var == "Runs":
238
+ df['Median'] = df['Runs']
239
+ elif prop_type_var == "Fantasy":
240
+ df['Median'] = df['Fantasy']
241
+ elif prop_type_var == "FD_Fantasy":
242
+ df['Median'] = df['FD_Fantasy']
243
+ elif prop_type_var == "PrizePicks":
244
+ df['Median'] = df['PrizePicks']
245
+
246
+ flex_file = df
247
+ if prop_group_var == 'Pitchers':
248
+ flex_file['Floor'] = flex_file['Median'] * .20
249
+ flex_file['Ceiling'] = flex_file['Median'] + (flex_file['Median'] * .80)
250
+ flex_file['STD'] = flex_file['Median'] / 4
251
+ flex_file = flex_file[['Player', 'Floor', 'Median', 'Ceiling', 'STD']]
252
+
253
+ elif prop_group_var == 'Hitters':
254
+ flex_file['Floor'] = np.where((prop_type_var == "Fantasy") | (prop_type_var == "FD_Fantasy") | (prop_type_var == "PrizePicks"), flex_file['Median'] * .20, 0)
255
+ flex_file['Ceiling'] = np.where((prop_type_var == "Fantasy") | (prop_type_var == "FD_Fantasy") | (prop_type_var == "PrizePicks"), flex_file['Median'] + (flex_file['Median'] * .80), flex_file['Median'] * 4)
256
+ flex_file['STD'] = flex_file['Median'] / 1.5
257
+ flex_file = flex_file[['Player', 'Floor', 'Median', 'Ceiling', 'STD']]
258
+
259
+ hold_file = flex_file
260
+ overall_file = flex_file
261
+ salary_file = flex_file
262
+
263
+ overall_players = overall_file[['Player']]
264
+
265
+ for x in range(0,total_sims):
266
+ overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
267
+
268
+ overall_file=overall_file.drop(['Player', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
269
+ overall_file.astype('int').dtypes
270
+
271
+ players_only = hold_file[['Player']]
272
+
273
+ player_outcomes = pd.merge(players_only, overall_file, left_index=True, right_index=True)
274
+
275
+ players_only['Mean_Outcome'] = overall_file.mean(axis=1)
276
+ players_only['10%'] = overall_file.quantile(0.1, axis=1)
277
+ players_only['90%'] = overall_file.quantile(0.9, axis=1)
278
+ if ou_var == 'Over':
279
+ players_only['beat_prop'] = overall_file[overall_file > prop_var].count(axis=1)/float(total_sims)
280
+ elif ou_var == 'Under':
281
+ players_only['beat_prop'] = (overall_file[overall_file < prop_var].count(axis=1)/float(total_sims))
282
+
283
+ players_only['implied_odds'] = np.where(line_var <= 0, (-(line_var)/((-(line_var))+100)), 100/(line_var+100))
284
+
285
+ players_only['Player'] = hold_file[['Player']]
286
+
287
+ final_outcomes = players_only[['Player', '10%', 'Mean_Outcome', '90%', 'implied_odds', 'beat_prop']]
288
+ final_outcomes['Bet?'] = np.where(final_outcomes['beat_prop'] - final_outcomes['implied_odds'] >= .10, "Bet", "No Bet")
289
+ final_outcomes = final_outcomes.loc[final_outcomes['Player'] == player_check]
290
+ player_outcomes = player_outcomes.loc[player_outcomes['Player'] == player_check]
291
+ player_outcomes = player_outcomes.drop(columns=['Player']).transpose()
292
+ player_outcomes = player_outcomes.reset_index()
293
+ player_outcomes.columns = ['Instance', 'Outcome']
294
+
295
+ x1 = player_outcomes.Outcome.to_numpy()
296
+
297
+ print(x1)
298
+
299
+ hist_data = [x1]
300
+
301
+ group_labels = ['player outcomes']
302
+
303
+ fig = ff.create_distplot(
304
+ hist_data, group_labels, bin_size=[.05])
305
+ fig.add_vline(x=prop_var, line_dash="dash", line_color="green")
306
+
307
+ with df_hold_container:
308
+ df_hold_container = st.empty()
309
+ format_dict = {'10%': '{:.2f}', 'Mean_Outcome': '{:.2f}','90%': '{:.2f}', 'beat_prop': '{:.2%}','implied_odds': '{:.2%}'}
310
+ st.dataframe(final_outcomes.style.format(format_dict), use_container_width = True)
311
+
312
+ with info_hold_container:
313
+ st.info('The Y-axis is the percent of times in simulations that the player reaches certain thresholds, while the X-axis is the threshold to be met. The Green dotted line is the prop you entered. You can hover over any spot and see the percent to reach that mark.')
314
+
315
+ with plot_hold_container:
316
+ st.dataframe(player_outcomes, use_container_width = True)
317
+ plot_hold_container = st.empty()
318
+ st.plotly_chart(fig, use_container_width=True)
319
+
320
+ with tab5:
321
+ st.info('The Over and Under percentages are a compositve percentage based on simulations, historical performance, and implied probabilities, and may be different than you would expect based purely on the median projection. Likewise, the Edge of a bet is not the only indicator of if you should make the bet or not as the suggestion is using a base acceptable threshold to determine how much edge you should have for each stat category.')
322
+ if st.button("Reset Data/Load Data", key='reset5'):
323
+ st.cache_data.clear()
324
+ pitcher_stats, hitter_stats, team_frame, prop_frame, pick_frame = init_baselines()
325
+ col1, col2 = st.columns([1, 5])
326
+
327
+ with col2:
328
+ df_hold_container = st.empty()
329
+ info_hold_container = st.empty()
330
+ plot_hold_container = st.empty()
331
+ export_container = st.empty()
332
+
333
+ with col1:
334
+ game_select_var = st.selectbox('Select prop source', options = ['Draftkings', 'Pick6'])
335
+ if game_select_var == 'Draftkings':
336
+ prop_df = prop_frame[['Player', 'over_prop', 'over_line', 'under_line', 'prop_type']]
337
+ working_source = prop_frame.copy
338
+ elif game_select_var == 'Pick6':
339
+ prop_df = pick_frame[['Player', 'over_prop', 'over_line', 'under_line', 'prop_type']]
340
+ working_source = pick_frame.copy()
341
+ st.download_button(
342
+ label="Download Prop Source",
343
+ data=convert_df_to_csv(prop_df),
344
+ file_name='MLB_prop_source.csv',
345
+ mime='text/csv',
346
+ key='prop_source',
347
+ )
348
+ prop_type_var = st.selectbox('Select prop category', options = ['Strikeouts (Pitchers)', 'Total Outs (Pitchers)', 'Earned Runs (Pitchers)', 'Hits Against (Pitchers)',
349
+ 'Walks Allowed (Pitchers)', 'Total Bases (Hitters)', 'Stolen Bases (Hitters)'])
350
+
351
+ if st.button('Simulate Prop Category'):
352
+ with col2:
353
+
354
+ with df_hold_container.container():
355
+
356
+ if prop_type_var == "Strikeouts (Pitchers)":
357
+ player_df = pitcher_stats
358
+ prop_df = prop_frame[prop_frame['prop_type'] == 'pitcher_strikeouts']
359
+ prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
360
+ prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
361
+ prop_df = prop_df.loc[prop_df['Prop'] != 0]
362
+ prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+100)), 100/(prop_df['over_line']+100))
363
+ prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+100)), 100/(prop_df['under_line']+100))
364
+ df = pd.merge(player_df, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
365
+ elif prop_type_var == "Total Outs (Pitchers)":
366
+ player_df = pitcher_stats
367
+ prop_df = prop_frame[prop_frame['prop_type'] == 'pitcher_outs']
368
+ prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
369
+ prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
370
+ prop_df = prop_df.loc[prop_df['Prop'] != 0]
371
+ prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+100)), 100/(prop_df['over_line']+100))
372
+ prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+100)), 100/(prop_df['under_line']+100))
373
+ df = pd.merge(player_df, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
374
+ elif prop_type_var == "Earned Runs (Pitchers)":
375
+ player_df = pitcher_stats
376
+ prop_df = prop_frame[prop_frame['prop_type'] == 'pitcher_earned_runs']
377
+ prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
378
+ prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
379
+ prop_df = prop_df.loc[prop_df['Prop'] != 0]
380
+ prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+100)), 100/(prop_df['over_line']+100))
381
+ prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+100)), 100/(prop_df['under_line']+100))
382
+ df = pd.merge(player_df, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
383
+ elif prop_type_var == "Hits Against (Pitchers)":
384
+ player_df = pitcher_stats
385
+ prop_df = prop_frame[prop_frame['prop_type'] == 'pitcher_hits_allowed']
386
+ prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
387
+ prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
388
+ prop_df = prop_df.loc[prop_df['Prop'] != 0]
389
+ prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+100)), 100/(prop_df['over_line']+100))
390
+ prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+100)), 100/(prop_df['under_line']+100))
391
+ df = pd.merge(player_df, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
392
+ elif prop_type_var == "Walks Allowed (Pitchers)":
393
+ player_df = pitcher_stats
394
+ prop_df = prop_frame[prop_frame['prop_type'] == 'pitcher_walks']
395
+ prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
396
+ prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
397
+ prop_df = prop_df.loc[prop_df['Prop'] != 0]
398
+ prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+100)), 100/(prop_df['over_line']+100))
399
+ prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+100)), 100/(prop_df['under_line']+100))
400
+ df = pd.merge(player_df, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
401
+ elif prop_type_var == "Total Bases (Hitters)":
402
+ player_df = hitter_stats
403
+ prop_df = prop_frame[prop_frame['prop_type'] == 'batter_total_bases']
404
+ prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
405
+ prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
406
+ prop_df = prop_df.loc[prop_df['Prop'] != 0]
407
+ prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+100)), 100/(prop_df['over_line']+100))
408
+ prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+100)), 100/(prop_df['under_line']+100))
409
+ df = pd.merge(player_df, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
410
+ elif prop_type_var == "Stolen Bases (Hitters)":
411
+ player_df = hitter_stats
412
+ prop_df = prop_frame[prop_frame['prop_type'] == 'batter_stolen_bases']
413
+ prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
414
+ prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
415
+ prop_df = prop_df.loc[prop_df['Prop'] != 0]
416
+ prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+100)), 100/(prop_df['over_line']+100))
417
+ prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+100)), 100/(prop_df['under_line']+100))
418
+ df = pd.merge(player_df, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
419
+ elif prop_type_var == "Hits (Hitters)":
420
+ player_df = hitter_stats
421
+ prop_df = prop_frame[prop_frame['prop_type'] == 'batter_hits']
422
+ prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
423
+ prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
424
+ prop_df = prop_df.loc[prop_df['Prop'] != 0]
425
+ prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+100)), 100/(prop_df['over_line']+100))
426
+ prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+100)), 100/(prop_df['under_line']+100))
427
+ df = pd.merge(player_df, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
428
+
429
+ prop_dict = dict(zip(df.Player, df.Prop))
430
+ over_dict = dict(zip(df.Player, df.Over))
431
+ under_dict = dict(zip(df.Player, df.Under))
432
+
433
+ total_sims = 1000
434
+
435
+ df.replace("", 0, inplace=True)
436
+
437
+ if prop_type_var == "Strikeouts (Pitchers)":
438
+ df['Median'] = df['Ks']
439
+ elif prop_type_var == "Earned Runs (Pitchers)":
440
+ df['Median'] = df['ERs']
441
+ elif prop_type_var == "Total Outs (Pitchers)":
442
+ df['Median'] = df['Outs']
443
+ elif prop_type_var == "Hits Against (Pitchers)":
444
+ df['Median'] = df['Hits']
445
+ elif prop_type_var == "Walks Allowed (Pitchers)":
446
+ df['Median'] = df['BB']
447
+ elif prop_type_var == "Total Bases (Hitters)":
448
+ df['Median'] = df['Total Bases']
449
+ elif prop_type_var == "Stolen Bases (Hitters)":
450
+ df['Median'] = df['Stolen Bases (Hitters)']
451
+
452
+ flex_file = df
453
+ if prop_type_var == 'Strikeouts (Pitchers)':
454
+ flex_file['Floor'] = flex_file['Median'] * .20
455
+ flex_file['Ceiling'] = flex_file['Median'] * 1.8
456
+ flex_file['STD'] = flex_file['Median'] / 4
457
+ flex_file['Prop'] = flex_file['Player'].map(prop_dict)
458
+ flex_file = flex_file[['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']]
459
+
460
+ elif prop_type_var == 'Total Outs (Pitchers)':
461
+ flex_file['Floor'] = flex_file['Median'] * .20
462
+ flex_file['Ceiling'] = flex_file['Median'] * 1.8
463
+ flex_file['STD'] = flex_file['Median'] / 4
464
+ flex_file['Prop'] = flex_file['Player'].map(prop_dict)
465
+ flex_file = flex_file[['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']]
466
+
467
+ elif prop_type_var == 'Earned Runs (Pitchers)':
468
+ flex_file['Floor'] = flex_file['Median'] * .20
469
+ flex_file['Ceiling'] = flex_file['Median'] * 1.8
470
+ flex_file['STD'] = flex_file['Median'] / 4
471
+ flex_file['Prop'] = flex_file['Player'].map(prop_dict)
472
+ flex_file = flex_file[['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']]
473
+
474
+ elif prop_type_var == 'Hits Against (Pitchers)':
475
+ flex_file['Floor'] = flex_file['Median'] * .20
476
+ flex_file['Ceiling'] = flex_file['Median'] * 1.8
477
+ flex_file['STD'] = flex_file['Median'] / 4
478
+ flex_file['Prop'] = flex_file['Player'].map(prop_dict)
479
+ flex_file = flex_file[['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']]
480
+
481
+ elif prop_type_var == 'Walks Allowed (Pitchers)':
482
+ flex_file['Floor'] = flex_file['Median'] * .20
483
+ flex_file['Ceiling'] = flex_file['Median'] * 1.8
484
+ flex_file['STD'] = flex_file['Median'] / 4
485
+ flex_file['Prop'] = flex_file['Player'].map(prop_dict)
486
+ flex_file = flex_file[['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']]
487
+
488
+ elif prop_type_var == 'Total Bases (Hitters)':
489
+ flex_file['Floor'] = np.where((prop_type_var == "Fantasy") | (prop_type_var == "FD_Fantasy") | (prop_type_var == "PrizePicks"), flex_file['Median'] * .20, 0)
490
+ flex_file['Ceiling'] = np.where((prop_type_var == "Fantasy") | (prop_type_var == "FD_Fantasy") | (prop_type_var == "PrizePicks"), flex_file['Median'] * 1.8, flex_file['Median'] * 4)
491
+ flex_file['STD'] = flex_file['Median'] / 1.5
492
+ flex_file['Prop'] = flex_file['Player'].map(prop_dict)
493
+ flex_file = flex_file[['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']]
494
+
495
+ elif prop_type_var == 'Stolen Bases (Hitters)':
496
+ flex_file['Floor'] = np.where((prop_type_var == "Fantasy") | (prop_type_var == "FD_Fantasy") | (prop_type_var == "PrizePicks"), flex_file['Median'] * .20, 0)
497
+ flex_file['Ceiling'] = np.where((prop_type_var == "Fantasy") | (prop_type_var == "FD_Fantasy") | (prop_type_var == "PrizePicks"), flex_file['Median'] * 1.8, flex_file['Median'] * 4)
498
+ flex_file['STD'] = flex_file['Median'] / 1.5
499
+ flex_file['Prop'] = flex_file['Player'].map(prop_dict)
500
+ flex_file = flex_file[['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']]
501
+
502
+ hold_file = flex_file
503
+ overall_file = flex_file
504
+ prop_file = flex_file
505
+
506
+ overall_players = overall_file[['Player']]
507
+
508
+ for x in range(0,total_sims):
509
+ prop_file[x] = prop_file['Prop']
510
+
511
+ prop_file = prop_file.drop(['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
512
+
513
+ for x in range(0,total_sims):
514
+ overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
515
+
516
+ overall_file=overall_file.drop(['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
517
+
518
+ players_only = hold_file[['Player']]
519
+
520
+ player_outcomes = pd.merge(players_only, overall_file, left_index=True, right_index=True)
521
+
522
+ prop_check = (overall_file - prop_file)
523
+
524
+ players_only['Mean_Outcome'] = overall_file.mean(axis=1)
525
+ players_only['10%'] = overall_file.quantile(0.1, axis=1)
526
+ players_only['90%'] = overall_file.quantile(0.9, axis=1)
527
+ players_only['Over'] = prop_check[prop_check > 0].count(axis=1)/float(total_sims)
528
+ players_only['Imp Over'] = players_only['Player'].map(over_dict)
529
+ players_only['Over%'] = players_only[["Over", "Imp Over"]].mean(axis=1)
530
+ players_only['Under'] = prop_check[prop_check < 0].count(axis=1)/float(total_sims)
531
+ players_only['Imp Under'] = players_only['Player'].map(under_dict)
532
+ players_only['Under%'] = players_only[["Under", "Imp Under"]].mean(axis=1)
533
+ players_only['Prop'] = players_only['Player'].map(prop_dict)
534
+ players_only['Prop_avg'] = players_only['Prop'].mean() / 100
535
+ players_only['prop_threshold'] = .10
536
+ players_only = players_only.loc[players_only['Mean_Outcome'] > 0]
537
+ players_only['Over_diff'] = players_only['Over%'] - players_only['Imp Over']
538
+ players_only['Under_diff'] = players_only['Under%'] - players_only['Imp Under']
539
+ players_only['Bet_check'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], players_only['Over_diff'] , players_only['Under_diff'])
540
+ players_only['Bet_suggest'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], "Over" , "Under")
541
+ players_only['Bet?'] = np.where(players_only['Bet_check'] >= players_only['prop_threshold'], players_only['Bet_suggest'], "No Bet")
542
+ players_only['Edge'] = players_only['Bet_check']
543
+
544
+ players_only['Player'] = hold_file[['Player']]
545
+
546
+ final_outcomes = players_only[['Player', 'Prop', 'Mean_Outcome', 'Imp Over', 'Over%', 'Imp Under', 'Under%', 'Bet?', 'Edge']]
547
+
548
+ final_outcomes = final_outcomes.sort_values(by='Edge', ascending=False)
549
+
550
+ final_outcomes = final_outcomes.set_index('Player')
551
+
552
+ with df_hold_container:
553
+ df_hold_container = st.empty()
554
+ st.dataframe(final_outcomes.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
555
+ with export_container:
556
+ export_container = st.empty()
557
+ st.download_button(
558
+ label="Export Projections",
559
+ data=convert_df_to_csv(final_outcomes),
560
+ file_name='MLB_DFS_prop_proj.csv',
561
+ mime='text/csv',
562
+ key='prop_proj',
563
+ )
564
+
565
+ with tab6:
566
+ col1, col2, col3 = st.columns([2, 2, 2])
567
+ st.info('This sheet is more or less a static represenation of the Stat Specific Simulations. ROR is rate of return based on hit rate and payout. Use the over and under EDGEs to place bets. 20%+ should be considered a 1 unit bet, 15-20% is .75 units, 10-15% is .50 units, 5-10% is .25 units, and 0-5% is .1 units.')
568
+ if st.button("Reset Data", key='reset6'):
569
+ st.cache_data.clear()
570
+ pitcher_stats, hitter_stats, team_frame, prop_frame, betsheet_frame, pick_frame = init_baselines()
571
+ with col1:
572
+ split_var6 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var6')
573
+ if split_var6 == 'Specific Teams':
574
+ team_var6 = st.multiselect('Which teams would you like to include in the tables?', options = betsheet_frame['Team'].unique(), key='team_var6')
575
+ elif split_var6 == 'All':
576
+ team_var6 = betsheet_frame.Team.values.tolist()
577
+ with col2:
578
+ prop_choice_var6 = st.radio("Would you like to view all prop types or specific ones?", ('All', 'Specific Props'), key='prop_choice_var6')
579
+ if prop_choice_var6 == 'Specific Props':
580
+ prop_var6 = st.multiselect('Which props would you like to include in the tables?', options = betsheet_frame['prop_type'].unique(), key='prop_var6')
581
+ elif prop_choice_var6 == 'All':
582
+ prop_var6 = betsheet_frame.prop_type.values.tolist()
583
+ with col3:
584
+ player_choice_var6 = st.radio("Would you like to view all players props or specific ones?", ('All', 'Specific Players'), key='player_choice_var6')
585
+ if player_choice_var6 == 'Specific Players':
586
+ player_var6 = st.multiselect('Which players would you like to include in the tables?', options = betsheet_frame['Player'].unique(), key='player_var6')
587
+ elif player_choice_var6 == 'All':
588
+ player_var6 = betsheet_frame.Player.values.tolist()
589
+ betsheet_disp = betsheet_frame.copy()
590
+ betsheet_disp = betsheet_disp[betsheet_disp['Team'].isin(team_var6)]
591
+ betsheet_disp = betsheet_disp[betsheet_disp['prop_type'].isin(prop_var6)]
592
+ betsheet_disp = betsheet_disp[betsheet_disp['Player'].isin(player_var6)]
593
+ betsheet_disp = betsheet_disp.sort_values(by='over_EDGE', ascending=False)
594
+ st.dataframe(betsheet_disp.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), height=750, use_container_width = True)
595
+ st.download_button(
596
+ label="Export Betsheet",
597
+ data=convert_df_to_csv(betsheet_disp),
598
+ file_name='MLB_Betsheet_export.csv',
599
+ mime='text/csv',
600
+ key='MLB_Betsheet_export',
601
+ )
app.yaml ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ runtime: python
2
+ env: flex
3
+
4
+ runtime_config:
5
+ python_version: 3
6
+
7
+ entrypoint: streamlit run streamlit-app.py --server.port $PORT
8
+
9
+ automatic_scaling:
10
+ max_num_instances: 200
requirements.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ streamlit
2
+ gspread
3
+ openpyxl
4
+ matplotlib
5
+ pymongo
6
+ pulp
7
+ docker
8
+ plotly
9
+ scipy